精英家教网 > 高中数学 > 题目详情
已知直线关于直线对称,直线,则的斜率是______.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z1=log2(2x+1)+ki,z2=1-xi(其中x,k∈R),记z1z2的实部为f(x),若函数f(x)是关于x的偶函数,
(1)求k的值;
(2)求函数y=f(log2x)在x∈(0,a],a>0,a∈R上的最小值;
(3)求证:对任意实数m,函数y=f(x)图象与直线y=
12
x+m
的图象最多只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=kx+m与椭圆
x2
3
+y2=1
交于A、B两点,坐标原点O到直线l的距离为
3
2
,设弦长|AB|=f(k)
(1)求f(k)个关于实数k的表达式;
(2)若不等式|x-p|+|x-1|≥f(k)对k∈R,x∈R恒成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江西模拟)已知函数f(x)=(
3
sinωx+cosωx)cosωx-
1
2
,(ω>0)的最小正周期为4π.
(1)若函数y=g(x)与y=f(x)的图象关于直线x=π对称,求y=g(x)的单调递增区间.
(2)在△ABC中角A,B,C,的对边分别是a,b,c满足(2a-c)cosB=b•cosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•奉贤区一模)已知复数:z1=log2(2x+1)+ki,z2=1-xi(其中x,k∈R),记f(x)=Re(z1•z2
(1)试写出f(x)关于x的函数解析式
(2)若函数f(x)是偶函数,求k的值
(3)求证:对任意实数m,由(2)所得函数y=f(x)的图象与直线y=
12
x+m的图象最多只有一个交点.

查看答案和解析>>

科目:高中数学 来源:2010年上海市春季高考数学试卷(解析版) 题型:解答题

在平面上,给定非零向量,对任意向量,定义=-
(1)若=(2,3),=(-1,3),求
(2)若=(2,1),证明:若位置向量的终点在直线Ax+By+C=0上,则位置向量的终点也在一条直线上;
(3)已知存在单位向量,当位置向量的终点在抛物线C:x2=y上时,位置向量终点总在抛物线C′:y2=x上,曲线C和C′关于直线l对称,问直线l与向量满足什么关系?

查看答案和解析>>

同步练习册答案