精英家教网 > 高中数学 > 题目详情
过抛物线y2=2px焦点的直线交抛物线于A、B两点,O为坐标原点,则
OA
OB
的值是(  )
A.
3
4
p2
B.-
3
4
p2
C.3p2D.-3p2
若直线l垂直于x轴,则 A(
p
2
,p)
B(
p
2
,-p)
.
OA
OB
=(
p
2
)2-p2=-
3
4
p2
.…(2分)
若直线l不垂直于轴,设其方程为 y=k(x-
p
2
)
,A(x1,y1)B(x2,y2).
y=k(x-
p
2
)
y2=2px
?k2x2-p(2+k2)x+
p2
4
k2=0

x1+x2=
(2+k2)
k2
p,x1x2=
p2
4
.…(4分)
OA
OB
=x1x2+y1y2=x1x2+k2(x1-
p
2
)(x2-
p
2
)
=(1+k2)x1x2-
p
2
k2(x1+x2)+
p2k2
4
=(1+k2)
p2
4
-
p
2
k2
(2+k2)p
k2
+
p2k2
4
=-
3
4
p2

综上,
OA
OB
=-
3
4
p2
为定值.…(6分)
故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,与抛物线的准线的交点为B,点A在抛物线准线上的射影为C,若
AF
=
FB
BA
BC
=48
,则抛物线的方程为(  )
A、y2=4x
B、y2=8x
C、y2=16x
D、y2=4
2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)上一定点P(x0,y0)(y0>0)作两条直线分别交抛物线于A(x1,y1),B(x2,y2),若PA与PB的斜率存在且倾斜角互补,则
y1+y2y0
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点F作直线交抛物线于A、B两点,O为抛物线的顶点.则△ABO是一个(  )
A、等边三角形B、直角三角形C、不等边锐角三角形D、钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点F的直线AB交抛物线于A,B两点,弦AB的中点为M,过M作AB的垂直平分线交x轴于N.
(1)求证:FN=
12
AB

(2)过A,B的抛物线的切线相交于P,求P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)已知过抛物线y2=2px(p>0)的焦点F的直线交抛物线于M、N两点,直线OM、ON(O为坐标原点)分别与准线l:x=-
p
2
相交于P、Q两点,则∠PFQ=(  )

查看答案和解析>>

同步练习册答案