(本小题满分14分)已知椭圆
的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作
,其中圆心P的坐标为
.(1) 若FC是
的直径,求椭圆的离心率;(2)若
的圆心在直线
上,求椭圆的方程.
(1)椭圆的离心率
;(2)椭圆的方程为
。
【解析】(1)由椭圆的方程知a=1,再根据
,转化为
,再结合
,从而可得c,进而得到e.
(II) 圆心P既在FC的垂直平分线上,也在BC的垂直平分线上,所以通过解FC的垂直平分线和BC的垂直平分线方程组成的方程组得到圆心P的坐标,再根据P点在直线m+n=0上,从而可建立关于b,c的方程.根据a=1,解出b,c的值,求出椭圆方程.
解:(1)由椭圆的方程知
,∴点
,![]()
,
设
的坐标为
,………………1分
∵FC是
的直径,
∴![]()
∵
∴
--------------------2分
∴
,
----------------------------------------3分
解得
--------------------------------------5分
∴
椭圆的离心率
--------------------6分
(2)∵
过点F,B,C三点,
∴圆心P既在FC的垂直平分线上,也在BC的垂直平分线上,
FC的垂直平分线方程为
--------①
-----------7分
∵BC的中点为
,
![]()
∴BC的垂直平分线方程为
-----②
---------9分
由①②得
,
即
-----11分
∵P
在直线
上,∴ ![]()
![]()
![]()
∵
∴
-----------------13分
由
得![]()
∴椭圆的方程为
---------------------14分
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com