精英家教网 > 高中数学 > 题目详情
(2010•台州一模)如图所示的算法框图执行后输出的结果是(  )
分析:根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦不满足条件就退出循环,从而到结论.
解答:解:循环前,n=0.2,i=1,
第1次循环,n=0.4,i=2,
第2次循环,n=0.8,i=3,
第3次循环,n=0.6,i=4,
第4次循环,n=0.2,i=5,

可知,n的值循环出现,其周期是4.
当i=2011时不满足i≤2010,退出循环,输出的结果为0.8,
故选D.
点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•台州一模)已知集合A={x|x<3} B={1,2,3,4},则(?RA)∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州一模)设m为直线,α,β,γ为三个不同的平面,下列命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州一模)在实数等比数列{an}中,a2+a6=34,a3a5=64,则a4=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州一模)设F1,F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,已知点P(
a2
c
3
b
)(其中c为椭圆的半焦距),若线段PF1的中垂线恰好过点F2,则椭圆离心率的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州一模)某电子科技公司遇到一个技术性难题,决定成立甲、乙两个攻关小组,按要求各自独立进行为期一个月的技术攻关,同时决定对攻关限期内攻克技术难题的小组给予奖励.已知此技术难题在攻关期限内被甲小组攻克的概率为
2
3
,被乙小组攻克的概率为
3
4

(1)设ξ为攻关期满时获奖的攻关小组数,求ξ的分布列及数学期望Eξ;
(2)设η为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函数f(x)=|η-
1
2
|x
在定义域内单调递增”为事件C,求事件C发生的概率.

查看答案和解析>>

同步练习册答案