精英家教网 > 高中数学 > 题目详情

【题目】给出下列说法:

①如果一条线段的中点在一个平面内,那么它的两个端点也在这个平面内;

②两组对边分别相等的四边形是平行四边形;

③两组对边分别平行的四边形是平行四边形;

④若一个四边形有三条边在同一个平面内,则第四条边也在这个平面内;

⑤点在平面外,点和平面内的任意一条直线都不共面.

其中所有正确说法的序号是______.

【答案】③④

【解析】

对于由线面关系可得线段与平面相交或线段在平面内;

对于四个点不在同一个平面,即可判定;

对于③由平行四边形的定义可判断命题正确;

对于④,由点与线及线与面的关系可得,第四条边的两个端点也在这个平面内,所以第四条边在这个平面内;

对于⑤中,由直线外一点与直线确定一个平面即可判断.

①中线段可以与平面相交;②中的四边形可以是空间四边形;③中平行的对边能确定一个平面,所以是平行四边形;④中由四边形的三条边在同一个平面内,可知第四条边的两个端点也在这个平面内,所以第四条边在这个平面内;⑤中点和平面内的任意一条直线都能确定一个平面.

故答案为:③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,若椭圆经过点,且的面积为.

(1)求椭圆的标准方程;

(2)设斜率为的直线与以原点为圆心,半径为的圆交于两点,与椭圆交于两点,且,当取得最小值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,四边形是菱形,四边形是正方形,,点的中点.

(1)求证:平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知椭圆的左、右顶点分别为A,B,其离心率,点为椭圆上的一个动点,面积的最大值是

(1)求椭圆的方程;

(2)若过椭圆右顶点的直线与椭圆的另一个交点为,线段的垂直平分线与轴交于点,当时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角A,B,C的对边分别是且满足

(1)求角B的大小;

(2)若的面积为为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】类比平面几何中的定理:△ABC中,若DE是△ABC的中位线,则有SADESABC14;若三棱锥ABCD有中截面EFG∥平面BCD,则截得三棱锥的体积与原三棱锥体积之间的关系式为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆周上的所有点进行三染色。证明:存在无穷多个等腰三角形,其顶点均为圆周上的同色点。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数处的切线方程为,求实数的值;

(2)若函数两处取得极值,求实数的取值范围;

(3)在(2)的条件下,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中,且函数处取得最大值.

1)求的最小值,并求出此时函数的解析式和最小正周期;

2)在(1)的条件下,先将的图像上的所有点向右平移个单位,再把所得图像上所有点的横坐标伸长为原来的2(纵坐标不变),然后将所得图像上所有的点向下平移个单位,得到函数的图像.若在区间上,方程有两个不相等的实数根,求实数a的取值范围;

3)在(1)的条件下,已知点P是函数图像上的任意一点,点Q为函数图像上的一点,点,且满足,求的解集.

查看答案和解析>>

同步练习册答案