精英家教网 > 高中数学 > 题目详情
2.若弹簧挂着的小球做简谐运动,时间t(s)与小球相对于平衡位置(即静止时的位置)的高度h(cm)之间的函数关系式是h=2sin(ωt+$\frac{π}{4}$),t∈[0,+∞),其图象如图所示.
(1)求ω(ω>0)的值;
(2)小球开始运动(即t=0)时的位置在哪里?
(3)小球运动的最高点、最低点与平衡位置的距离分别是多少?

分析 (1)根据函数h(t)的图象与性质,求出周期T与ω的值;
(2)计算t=0时h(0)的值即可;
(3)求出小球运动到最高点时h1与最低点时h2的值,再计算绝对值即可.

解答 解:(1)根据函数h=2sin(ωt+$\frac{π}{4}$),t∈[0,+∞)的图象知,
$\frac{T}{2}$=$\frac{5}{4}$π-$\frac{π}{4}$=π,
∴周期T=2π,
∴$\frac{2π}{|ω|}$=2π,
又ω>0,∴ω=1;
(2)当t=0时,h(0)=2sin$\frac{π}{4}$=$\sqrt{2}$,
∴小球开始运动(即t=0)时,位置在点(0,$\sqrt{2}$)处;
(3)小球运动的最高点时h1=2,最低点时h2=-2,
∴小区在最高点与最低点处与平衡位置的距离分别是|h1|=2和|h2|=2.

点评 本题考查了三角函数的图象与性质的应用问题,也考查了数形结合的解题思想,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知f(x)=$\left\{\begin{array}{l}{(6-a)x-4a,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$在区间(-∞,+∞)上是单调递增函数,则实数a的取值范围是(  )
A.(1,6)B.[$\frac{6}{5}$,6)C.[1,$\frac{6}{5}$]D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.y=1-2sin2x的值域为[-1,3],当y取最大值时,x=kπ-$\frac{π}{4}$(k∈Z);当y取最小值时,x=kπ+$\frac{π}{4}$(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.过双曲线$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1的右焦点,倾斜角为30°的直线交双曲线于A、B两点,求A,B两点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数的最小正周期:
(1)f(x)=cos($\frac{πx}{2}$);
(2)f(x)=sin($\frac{π}{6}$-2x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,若$\overrightarrow{a}$•$\overrightarrow{b}$>0,则△ABC的形状为(  )
A.直角三角形B.锐角三角形C.钝角三角形D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在半径为r的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形面积最大时,其上底长为(  )
A.$\frac{r}{2}$B.$\frac{\sqrt{3}}{2}$rC.$\frac{\sqrt{3}}{3}$rD.r

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a1=$\frac{1}{2}$,an=$\frac{{a}_{n-1}}{2-{a}_{n-1}}$(n≥2).
(1)求证:{$\frac{1}{a{\;}_{n}}$-1}为等比数列,并求出{an}的通项公式;
(2)若bn=$\frac{2n-1}{{a}_{n}}$,求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.证明:当n为大于2的整数时,n5-5n3+4n能被120整除.

查看答案和解析>>

同步练习册答案