精英家教网 > 高中数学 > 题目详情

【题目】(Ⅰ)已知x2+y2=1,求2x+3y的取值范围;
(Ⅱ)已知a2+b2+c2﹣2a﹣2b﹣2c=0,求证:

【答案】解:(Ⅰ)由柯西公式(x2+y2)(4+9)≥(2x+3y)2
则|2x+3y|
∴﹣ ≤2x+3y≤
(Ⅱ)证明:由a2+b2+c2﹣2a﹣2b﹣2c=0,得(a﹣1)2+(1﹣b)2+(1﹣c)2=3,
由柯西公式[(a﹣1)2+(1﹣b)2+(1﹣c)2](4+1+1)≥[2(a+1)+(1﹣b)+(1﹣c)]2
得证:18≥(2a﹣b﹣c)2 , 所以
【解析】(Ⅰ)已知x2+y2=1,由柯西公式(x2+y2)(4+9)≥(2x+3y)2 , 即可求2x+3y的取值范围;(Ⅱ)由柯西公式[(a﹣1)2+(1﹣b)2+(1﹣c)2](4+1+1)≥[2(a+1)+(1﹣b)+(1﹣c)]2 , 即可证明结论.
【考点精析】利用不等式的证明对题目进行判断即可得到答案,需要熟知不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知p:x2﹣7x+10<0,q:x2﹣4mx+3m2<0,其中m>0.
(1)若m=4,且p∧q为真,求x的取值范围;
(2)若¬q是¬p的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%50%,可能的最大亏损分别为30%10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项为正数的数列{an}的前n项和为Sn , 且满足
(Ⅰ)求证:{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)设 ,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是现代生活进行信息交流的重要工具,据统计,某公司名员工中的人使用微信,其中每天使用微信时间在一小时以内的有人,其余每天使用微信在一小时以上.若将员工年龄分成青年(年龄小于岁)和中年(年龄不小于岁)两个阶段,使用微信的人中是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,经常使用微信的员工中是青年人.

)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出列联表;


青年人

中年人

合计

经常使用微信




不经常使用微信




合计




)由列联表中所得数据,是否有的把握认为经常使用微信与年龄有关

)采用分层抽样的方法从经常使用微信的人中抽取人,从这人中任选人,求事件 选出的人均是青年人的概率.

附:







查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某城市居民用水量的情况,我们获得100位居民某年的月均用水量(单位:吨)通过对数据的处理,我们获得了该100位居民月均用水量的频率分布表,并绘制了频率分布直方图(部分数据隐藏)

100位居民月均用水量的频率分布表

组号

分组

频数

频率

1

4

0.04

2

0.08

3

15

4

22

5

6

14

0.14

7

6

8

4

0.04

9

0.02

合 计

100

(1)确定表中的值

(2)求频率分布直方图中左数第4个矩形的高度;

(3)在频率分布直方图中画出频率分布折线图;

(4)我们想得到总体密度曲线,请回答我们应该怎么做?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业员工500人参加学雷锋志愿活动,按年龄分组:第1[25,30),第2[30,35),第3[35,40),第4[40,45),第5[45,50],得到的频率分布直方图如图所示.

(1)上表是年龄的频数分布表,求正整数的值;

(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?

(3)(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线经过点,且斜率为

(I)求直线的方程;

)若直线平行,且点P到直线的距离为3,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.
(1)求证:2a+b=2;
(2)若a+2b≥tab恒成立,求实数t的最大值.

查看答案和解析>>

同步练习册答案