【题目】已知椭圆
,四点
、
、
、
中恰有三点在椭圆上.
(1)求椭圆的方程;
(2)已知点
是椭圆的右顶点,作一条平行于
的直线
交椭圆于
、
两点,记直线
和直线
的斜率分别为
、
,试判断
是否为定值?若是,求出该定值;若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】2018年9~12月某市邮政快递业务量完成件数较2017年9~12月同比增长25%,该市2017年9~12月邮政快递业务量柱形图及2018年9~12月邮政快递业务量结构扇形图如图所示,根据统计图,给出下列结论:
![]()
![]()
①2018年9~12月,该市邮政快递业务量完成件数约1500万件;
②2018年9~12月,该市邮政快递同城业务量完成件数与2017年9~12月相比有所减少;
③2018年9~12月,该市邮政快递国际及港澳台业务量同比增长超过75%,其中正确结论的个数为( )
A. 3
B. 2
C. 1
D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列五个命题:
①若
为真命题,则
为真命题;
②命题“
,有
”的否定为“
,有
”;
③“平面向量
与
的夹角为钝角”的充分不必要条件是“
”;
④在锐角三角形
中,必有
;
⑤
为等差数列,若
,则![]()
其中正确命题的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,
,
两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如下表:
组别 年龄 |
|
| ||
经常使用单车 | 偶尔使用单车 | 经常使用单车 | 偶尔使用单车 | |
| 27人 | 13人 | 40人 | 20人 |
| 23人 | 17人 | 35人 | 25人 |
| 20人 | 20人 | 35人 | 25人 |
(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.
①求这60人中“年龄达到35岁且偶尔使用单车”的人数;
②为听取对发展共享单车的建议,调查组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会.会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自
组,求
组这4人中得到礼品的人数
的分布列和数学期望;
(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作
岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄
应取25还是35?请通过比较
的观测值的大小加以说明.
参考公式:
,其中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某汽车公司最近研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程的测试。现对测试数据进行分析,得到如图所示的频率分布直方图:
![]()
(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表).
(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程
近似地服从正态分布
,经计算第(1)问中样本标准差
的近似值为50。用样本平均数
作为
的近似值,用样本标准差
作为
的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.
参考数据:若随机变量服从正态分布
,则
,
,
.
(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券3万元。已知硬币出现正、反面的概率都是0.5方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次。若掷出正面,遥控车向前移动一格(从
到
)若掷出反面遥控车向前移动两格(从
到
),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第
格的概率为P试证明
是等比数列,并求参与游戏一次的顾客获得优惠券金额的期望值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
:
(
为参数,实数
),曲线
:
(
为参数,实数
).在以
为极点,
轴的正半轴为极轴的极坐标系中,射线
(
,
)与
交于
,
两点,与
交于
,
两点,当
时,
;当
时,
.
(1)求
,
的值;
(2)求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一酒企为扩大生产规模,决定新建一个底面为长方形
的室内发酵馆,发酵馆内有一个无盖长方体发酵池,其底面为长方形
(如图所示),其中
.结合现有的生产规模,设定修建的发酵池容积为450米
,深2米.若池底和池壁每平方米的造价分别为200元和150元,发酵池造价总费用不超过65400元
![]()
(1)求发酵池
边长的范围;
(2)在建发酵馆时,发酵池的四周要分别留出两条宽为4米和
米的走道(
为常数).问:发酵池的边长如何设计,可使得发酵馆占地面积最小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com