精英家教网 > 高中数学 > 题目详情
(2013•广元二模)在(1-x)n=a0+a1x+a2x2+a3x3+…+anxn中,若2a2+an-5=0,则自然数n的值是(  )
分析:由二项展开式的通项公式Tr+1=
C
r
n
•(-1)rxr可得an=(-1)r
C
r
n
,于是有2(-1)2
C
2
n
+(-1)n-5
C
5
n
=0,由此可解得自然数n的值.
解答:解:由题意得,该二项展开式的通项公式Tr+1=
C
r
n
•(-1)rxr
∴其二项式系数an=(-1)r
C
r
n

∵2a2+an-5=0,
∴2(-1)2
C
2
n
+(-1)n-5
C
5
n
=0,即2
C
2
n
+(-1)n-5
C
5
n
=0,
∴n-5为奇数,
∴2
C
2
n
=
C
n-5
n
=
C
5
n

∴2×
n(n-1)
2
=
n(n-1)(n-2)(n-3)(n-4)
5!

∴(n-2)(n-3)(n-4)=120.
∴n=8.
故答案为:8.
点评:本体考察二项式定理的应用,着重考察二项式系数的概念与应用,由二项展开式的通项公式得到二项式系数an=(-1)r
C
r
n
是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•广元二模)已知各项均为正数的等比数列{an}满足a7=a6+2a5,若存在两项am,an使得
aman
=4a1,则
1
m
+
4
n
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广元二模)已知函数f(x)=
1
3
x3-x2+ax+b
的图象在点P(0,f(0))处的切线方程为y=3x-2.
(1)求实数a,b的值;
(2)设g(x)=f(x)+
m
x-1
是[2,+∞)上的增函数.
①求实数m的最大值;
②当m取最大值时,是否存在点Q,使得过点Q的直线若能与曲线y=g(x)围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广元二模)函数f(x)=
1-2log2x
的定义域为
(0,
2
]
(0,
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广元二模)已知集合M={x|(x+1)(x+2)<0},N={x||x|<1},则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广元二模)如果实数x、y满足
x-y+1≥0
y+1≥0
x+y+1≤0
,则z=x+2y
的最小值是
-4
-4

查看答案和解析>>

同步练习册答案