精英家教网 > 高中数学 > 题目详情
4.函数y=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$+$\sqrt{cos2016π}$的值域是{0,4}.

分析 讨论角x的象限,进行化简即可.

解答 解:y=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$+$\sqrt{cos2016π}$=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$+1,
若x是第一象限,则y=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$+1=1+1+1+1=4,
若x是第二象限,则y=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$+1=1-1-1+1=0,
若x是第三象限,则y=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$+1=-1-1+1+1=0,
若x是第四象限,则y=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$+1=-1+1-1+1=0,
综上y=0或4,
即函数的值域为{0,4},
故答案为:{0,4}

点评 本题主要考查函数值域的求解,根据条件讨论角x的象限和符号之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.下列说法中正确的是①②③.
①设随机变量X服从二项分布B(6,$\frac{1}{2}$),则P(X=3)=$\frac{5}{16}$
②对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x)
③若f′(x0)=-3,则$\underset{lim}{h→0}$$\frac{f({x}_{0}+h)-f({x}_{0}-3h)}{h}$=-12
④E(2X+3)=2E(X)+3,D(2X+3)=2D(X)+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若大前提是,任何实数的四次方都大于0,小前提是:a∈R,结论是:a4>0,那么这个演绎推理(  )
A.大前提错误B.小前提错误C.推理形式错误D.没有错误

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设变量x,y满足约束条件$\left\{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}\right.$,则$\frac{y+2}{x-2}$的取值范围是(  )
A.[-5,$\frac{5}{3}$]B.[-5,0)∪[$\frac{5}{3}$,+∞)C.(-∞,-5]∪[$\frac{5}{3}$,+∞)D.[-5,0)∪(0,$\frac{5}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\sqrt{1-{x}^{2}}$,则${∫}_{-1}^{1}$ f (x)dx的值为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=$\frac{1}{3}$x3+mx2-3m2x+1,m∈R在区间(-2,3)上是减函数,则实数m的取值范围为(  )
A.m≥3B.m≤-2C.m≥2或m≤-3D.m≥3或m≤-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.计算:1-2sin2105°=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知a为正的常数,函数g(x)=|x-a|+$\frac{lnx}{x}$,x∈[1,e],则g(x)的最小值为g(x)min=$\left\{\begin{array}{l}{1-a,0<a≤1}\\{\frac{lna}{a},1<a≤e}\\{a-e+\frac{1}{e},a>e}\end{array}\right.$(e≈2.71828为自然对数的底数,写成分段函数形式)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l的参数方程为:$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}$(t为参数),曲线C的参数方程为:$\left\{\begin{array}{l}x=4{t^2}\\ y=4t\end{array}$(t为参数),顶点为O.
(1)求直线的倾斜角和斜率;
(2)证明直线l与曲线C相交于两点;
(3)设(2)中的交点为A,B,求三角形AOB的面积.

查看答案和解析>>

同步练习册答案