精英家教网 > 高中数学 > 题目详情
14.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=ex+x2+1,则函数h(x)=2f(x)-g(x)在点(0,h(0))处的切线方程是x-y+4=0.

分析 由题意可得f(-x)=f(x),g(-x)=-g(x),将已知条件中的方程的x换为-x,解方程可得f(x),g(x)的解析式,求得h(x)的解析式和导数,可得切线的斜率和切点,运用点斜式方程可得所求切线的方程.

解答 解:f(x),g(x)分别是定义在R上的偶函数和奇函数,
可得f(-x)=f(x),g(-x)=-g(x),
由f(x)-g(x)=ex+x2+1,
可得f(-x)-g(-x)=e-x+x2+1,
即为f(x)+g(x)=e-x+x2+1,
解得$f(x)=\frac{{{e^x}+{e^{-x}}+2{x^2}+2}}{2}$,$g(x)=\frac{{{e^{-x}}-{e^x}}}{2}$,
即有h(x)=2f(x)-g(x)=${e^x}+{e^{-x}}+2{x^2}+2-\frac{{{e^{-x}}-{e^x}}}{2}$
=$\frac{3}{2}{e^x}+\frac{1}{2}{e^{-x}}+2{x^2}+2$,
可得导数为$h'(x)=\frac{3}{2}{e^x}+\frac{1}{2}{e^{-x}}•(-1)+4x$,
即有在点(0,h(0))处的切线斜率为$h'(0)=\frac{3}{2}-\frac{1}{2}=1$,
切点为(0,4),
则所求切线方程是x-y+4=0.
故答案为:x-y+4=0.

点评 本题主要考查导数的运用:求切线的方程,注意运用导数的几何意义,同时考查函数的解析式的求法,注意运用奇偶函数的定义,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow{OA}$=(4,2),$\overrightarrow{OB}$=(-4,y),并且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,则$\overrightarrow{AB}$的长度为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某几何体的正(主)视图和俯视图如图所示,则该几何体的体积的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=(ax2+bx+a-b)ex-$\frac{1}{2}$(x-1)(x2+2x+2),a∈R,且曲线y=f(x)与x轴切于原点O.
(1)求实数a,b的值;
(2)若f(x)•(x2+mx-n)≥0恒成立,求m+n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.曲线f(x)=2x2-3x在点(1,f(1))处的切线方程为x-y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,圆内接四边形ABCD中,AB=2,BC=4,∠ABC=60° 顶点D在劣弧$\widehat{AC}$上运动,则三角形ACD面积的最大值等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知实数x,y满足xy-3=x+y,且x>1,则y(x+8)的最小值是(  )
A.33B.26C.25D.21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四边形ABCD中,AB=4,AC=2$\sqrt{3}$,cos∠ACB=$\frac{1}{3}$,∠D=2∠B.
(Ⅰ)求sin∠B;
(Ⅱ)若AB=4AD,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点为M,第二象限的点P,Q在双曲线的某条渐近线上,且$\overrightarrow{OP}$=$\frac{1}{3}$$\overrightarrow{OQ}$,若△MPQ为等边三角形,则下列结论正确的有①②(写出所有正确结论的序号)
①双曲线的渐近线方程为y=±$\frac{\sqrt{3}}{2}$x;
②双曲线的离心率为$\frac{\sqrt{7}}{2}$;
③双曲线的顶点为(±2,0);
④双曲线的焦点为(±3,0)

查看答案和解析>>

同步练习册答案