精英家教网 > 高中数学 > 题目详情
4.已知双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点为M,第二象限的点P,Q在双曲线的某条渐近线上,且$\overrightarrow{OP}$=$\frac{1}{3}$$\overrightarrow{OQ}$,若△MPQ为等边三角形,则下列结论正确的有①②(写出所有正确结论的序号)
①双曲线的渐近线方程为y=±$\frac{\sqrt{3}}{2}$x;
②双曲线的离心率为$\frac{\sqrt{7}}{2}$;
③双曲线的顶点为(±2,0);
④双曲线的焦点为(±3,0)

分析 设双曲线的一条渐近线方程为y=-$\frac{b}{a}$x,P的坐标为(m,-$\frac{b}{a}$m),由$\overrightarrow{OP}$=$\frac{1}{3}$$\overrightarrow{OQ}$,可得Q(3m,-$\frac{3bm}{a}$),运用中点坐标公式和两直线垂直的条件:斜率之积为-1,运用等边三角形的高为底边的$\frac{\sqrt{3}}{2}$,化简整理,可得a,b的关系式,即可得到所求双曲线的渐近线的方程,双曲线的离心率.

解答 解:设双曲线的一条渐近线方程为y=-$\frac{b}{a}$x,P的坐标为(m,-$\frac{b}{a}$m),由$\overrightarrow{OP}$=$\frac{1}{3}$$\overrightarrow{OQ}$,可得:Q(3m,-$\frac{3bm}{a}$),
P,Q的中点为H(2m,-$\frac{2bm}{a}$),M(-a,0),
由MH⊥PQ,可得$\frac{-\frac{2bm}{a}}{2m+a}$=$\frac{a}{b}$,
解得m=-$\frac{{a}^{3}}{2{c}^{2}}$,
可得|PQ|=$\sqrt{4{m}^{2}+\frac{4{b}^{2}{m}^{2}}{{a}^{2}}}$=$\frac{{a}^{2}}{c}$,
由等边三角形MPQ可得,
|MH|=$\frac{\sqrt{3}}{2}$|PQ|,
即有$\frac{|ab|}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{\sqrt{3}}{2}$•$\frac{{a}^{2}}{c}$,
即有b=$\frac{\sqrt{3}}{2}$a,
则双曲线的渐近线方程为y=±$\frac{b}{a}$x,
即为y=±$\frac{\sqrt{3}}{2}$x.故①正确,
∵b=$\frac{\sqrt{3}}{2}$a,
∴c2=a2+b2=a2+$\frac{3}{4}$a2=$\frac{7}{4}$a2
则e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{7}{4}$,
则e=$\frac{\sqrt{7}}{2}$,故②正确,
双曲线的顶点坐标和焦点坐标不确定,故③④错误,
故答案为:①②

点评 本题考查命题的真假判断,涉及双曲线的渐近线方程的求法,离心率的计算,考查向量共线的坐标表示,以及点到直线的距离公式和两直线垂直的条件,以及化简整理的运算能力,综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=ex+x2+1,则函数h(x)=2f(x)-g(x)在点(0,h(0))处的切线方程是x-y+4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数z=$\frac{2}{1+i}$(i为虚数单位)的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{a}$=($\sqrt{3}$sinx,-1),$\overrightarrow{b}$=(cosx,m),m∈R
(1)若m=tan$\frac{10π}{3}$,且$\overrightarrow{a}$∥$\overrightarrow{b}$,求cos2x-sin2x的值;
(2)将函数f(x)=2($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$-2m2-1的图象向右平移$\frac{π}{6}$个单位得到函数g(x)的图象,若函数g(x)在[0,$\frac{π}{2}$]上有零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列说法中正确的有:①③④.(将你认为正确的命题序号全部填在横线上)
①电影院调查观众的某一指标,通知“每排(每排人数相等)座位号为14的观众留下来座谈”是系统抽样;
②推理过程“因为指数函数y=ax是增函数,而y=2x是指数函数,所以y=2x是增函数”中,小前提是错误的;
③对命题“正三角形与其内切圆切于三边中点”可类比猜想:正四面体与其内切球切于各面中心;
④在判断两个变量y与x是否相关时,选择了3个不同的模型,它们的相关指数R2分别为:模型1为0.98,模型2为0.80,模型3为0.50.其中拟合效果最好的是模型1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在△ABC中,点D在边AB上,∠BCD=60°,AC=$\sqrt{7}$,CD=2,BD=2AD,则AD=$\sqrt{3}$或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列结论中,正确的是(  )
A.“x>2”是“x2-2x>0”成立的必要条件
B.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,则“$\overrightarrow{a}$∥$\overrightarrow{b}$”是“$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{0}$”的充要条件
C.命题“p:?x∈R,x2≥0”的否定形式为“¬p:?x0∈R,x02≥0”
D.命题“若x2=1,则x=1”的逆否命题为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),F1,F2为C的左右焦点,P为C右支上一点,且使∠F1PF2=$\frac{π}{3}$,又△F1PF2的面积为3$\sqrt{3}$a2
(I)求双曲线C的离心率e;
(Ⅱ)设A为C的左顶点,Q为第一象限内C上任意一点,问是否存在常数λ(λ>0),使得∠QF2A=λ∠QAF2恒成立,若存在,求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数y=f(x)的图象与函数y=3x+a的图象关于直线y=-x对称,且f(-1)+f(-3)=3,则实数a等于(  )
A.-1B.1C.2D.4

查看答案和解析>>

同步练习册答案