分析 设AD=x,则BD=2x,AB=3x,先在△ACD中利用余弦定理求出cosA,再在△ABC中使用余弦定理计算BC2,最后在△BCD中使用余弦定理列方程解出x.
解答 解:设AD=x,则BD=2x,AB=3x.
在△ACD中,由余弦定理得cosA=$\frac{A{C}^{2}+A{D}^{2}-C{D}^{2}}{2AC•AD}$=$\frac{{x}^{2}+3}{2\sqrt{7}x}$.
在△ABC中,由余弦定理得BC2=AC2+AB2=2AC•AB•cosA=7+9x2-2$•\sqrt{7}•3x•\frac{{x}^{2}+3}{2\sqrt{7}x}$=6x2-2.
在△BCD中,由余弦定理得cos∠BCD=$\frac{B{C}^{2}+C{D}^{2}-B{D}^{2}}{2BC•CD}$,即$\frac{1}{2}$=$\frac{2{x}^{2}+2}{4\sqrt{6{x}^{2}-2}}$,解得x=1或x=$\sqrt{3}$.
故答案为:1或$\sqrt{3}$.
点评 本题考查了余弦定理的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | [2,+∞) | C. | (-∞,-2)∪(2,+∞) | D. | (-∞,-2]∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2i | B. | i | C. | -i | D. | -2i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com