精英家教网 > 高中数学 > 题目详情

如图,已知抛物线C1:x2+by=b2经过椭圆C2:+=1(a>b>0)的两个焦点.

(1)求椭圆C2的离心率;

(2)设点Q(3,b),M,NC1C2不在y轴上的两个交点,若△QMN的重心在抛物线C1,C1C2的方程.

 

【答案】

1 2x2+y=1 +y2=1

【解析】

:(1)因为抛物线C1经过椭圆C2的两个焦点F1(-c,0),F2(c,0),

所以c2+b×0=b2,

c2=b2.

a2=b2+c2=2c2,

所以椭圆C2的离心率e=.

(2)(1)可知a2=2b2,

椭圆C2的方程为+=1.

联立抛物线C1的方程x2+by=b2,

2y2-by-b2=0,

解得y=-y=b(舍去),

所以x=±b,

Mb,-,Nb,-,

所以△QMN的重心坐标为(1,0).

因为重心在C1,

所以12+b×0=b2,b=1.

所以a2=2.

所以抛物线C1的方程为x2+y=1,

椭圆C2的方程为+y2=1.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•嘉兴二模)如图,已知抛物线C1x2=2py的焦点在抛物线C2:y=
12
x2+1
上,点P是抛物线C1上的动点.
(Ⅰ)求抛物线C1的方程及其准线方程;
(Ⅱ)过点P作抛物线C2的两条切线,M、N分别为两个切点,设点P到直线MN的距离为d,求d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴二模)如图,已知抛物线C1:x2=2py的焦点在抛物线C2y=
12
x2+1
上.
(Ⅰ)求抛物线C1的方程及其准线方程;
(Ⅱ)过抛物C1上的动点P作抛物线C2的两条切线PM、PN,切点M、N.若PM、PN的斜率积为m,且m∈[2,4],求|OP|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C1:x2=2py(p>0)与圆C2x2+y2=
16
9
交于M、N两点,
且∠MON=120°.
(Ⅰ)求抛物线C1的方程;
(Ⅱ)设直线l与圆C2相切.
(ⅰ)若直线l与抛物线C1也相切,求直线l的方程;
(ⅱ)若直线l与抛物线C1交与不同的A、B两点,求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源:2014届江西吉安二中高二月考文科数学试卷(解析版) 题型:解答题

(14分)如图,已知抛物线C1: y=x2, 与圆C2: x2+(y+1)2="1," 过y轴上一点A(0, a)(a>0)作圆C2的切线AD,切点为D(x0, y0).

(1)证明:(a+1)(y0+1)=1

(2)若切线AD交抛物线C1于E,且E为AD的中点,求点A纵坐标a.

 

查看答案和解析>>

科目:高中数学 来源:2011年福建省南平市高三适应性考试数学试卷(理科)(解析版) 题型:解答题

如图,已知抛物线C1:x2=2py(p>0)与圆交于M、N两点,
且∠MON=120°.
(Ⅰ)求抛物线C1的方程;
(Ⅱ)设直线l与圆C2相切.
(ⅰ)若直线l与抛物线C1也相切,求直线l的方程;
(ⅱ)若直线l与抛物线C1交与不同的A、B两点,求的取值范围.

查看答案和解析>>

同步练习册答案