【题目】2020年4月16日,某州所有61个社区都有新冠病毒感染确诊病例,第二天该州新增这种病例183例.这两天该州以社区为单位的这种病例数的中位数,平均数,众数,方差和极差5个特征数中,一定变化的是______(写出所有的结果)
【答案】平均数
【解析】
由题意结合中位数、平均数、众数、方差和极差的概念,逐个检验即可得解.
中位数表示将一组数据有序排列,处于中间位置的那个数或两个数的平均数,该州新增病例183例,但各社区的数据变化不明确,所以中位数不一定发生变化;
平均数是一组数据中所有数据之和除以数据的个数,该州新增病例183例,数据之和增加,但数据个数依然为61,所以平均数一定发生变化;
众数为一组数据中出现次数最多的数,该州新增病例183例,但各社区的数据变化不明确,所以众数不一定发生变化;
方差是各个数据与其平均数的差的平方和的平均数,该州新增病例183例,但各社区的数据变化不明确,所以方差不一定发生变化;
极差是一组数据中最大值与最小值的差,该州新增病例183例,但各社区的数据变化不明确,所以极差不一定发生变化.
故答案为:平均数.
科目:高中数学 来源: 题型:
【题目】有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有( )种.
A.21
B.315
C.143
D.153
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某物体一天中的温度T是时间t的函数,已知T(t)=t3+at2+bt+c,其中温度的单位是℃,时间的单位是小时,规定中午12:00相应的t=0,中午12:00以后相应的t取正数,中午12:00以前相应的t取负数(例如早上8:00对应的t=﹣4,下午16:00相应的t=4),若测得该物体在中午12:00的温度为60℃,在下午13:00的温度为58℃,且已知该物体的温度在早上8:00与下午16:00有相同的变化率.
(1)求该物体的温度T关于时间t的函数关系式;
(2)该物体在上午10:00至下午14:00这段时间中(包括端点)何时温度最高?最高温度是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)对于任意m,n∈R,都有f(m+n)=f(m)+f(n)﹣1,并且当x>0时f(x)>1.
(1)求证:函数f(x)在R上为增函数;
(2)若f(3)=4,解不等式f(a2+a﹣5)<2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是R上的任意函数,则下列叙述正确的是( )
A.f(x)f(﹣x)是奇函数
B.f(x)|f(﹣x)|是奇函数
C.f(x)﹣f(﹣x)是偶函数
D.f(x)+f(﹣x)是偶函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛掷一枚骰子,记事件A为“落地时向上的点数是奇数”,事件B为“落地时向上的点数是偶数”,事件C为“落地时向上的点数是3的倍数”,事件D为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( )
A.A与B
B.B与C
C.A与D
D.C与D
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位实行职工值夜班制度,己知A,B,C,D,E5名职工每星期一到星期五都要值一次夜班,且没有两人同时值夜班,星期六和星期日不值夜班,若A昨天值夜班,从今天起B,C至少连续4天不值夜班,D星期四值夜班,则今天是星期__________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,已知是以为圆心,以4为半径的圆上的动点,与所连线段的垂直平分线与线段交于点。
(Ⅰ)求点的轨迹的方程;
(Ⅱ)已知点坐标为(4,0),并且倾斜角为锐角的直线经过点并且与曲线相交于两点,
(ⅰ)求证:;
(ⅱ)若,求直线的方程。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com