精英家教网 > 高中数学 > 题目详情
一条光线从点(-2,3)射出,经x轴反射后,与圆(x-3)2+(y-2)2=1相切,求反射光线所在直线的方程.
点(-2,3)关于x轴的对称点坐标为(-2,-3),设反射光线的斜率为k,
可得出反射光线为y+3=k(x+2),即kx-y+2k-3=0,
∵反射光线与圆(x-3)2+(y-2)2=1相切,
∴圆心到反射光线的距离d=r,即
|5k-5|
1+k2
=1,
整理得:(3k-4)(4k-3)=0,
解得:k=
4
3
或k=
3
4

则反射光线的方程为:3x-4y-6=0或4x-3y-1=0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一条光线从点(-2,3)射出,经x轴反射后,与圆(x-3)2+(y-2)2=1相切,求反射光线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:广州市2008届高中教材变式题8:直线与圆 题型:022

一条光线从点P(2,3)射出,经x轴反射,与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的方程是________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一条光线从点(-2,3)射出,经x轴反射后,与圆(x-3)2+(y-2)2=1相切,求反射光线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:《第4章 圆与方程》2013年单元测试卷2(解析版) 题型:解答题

一条光线从点(-2,3)射出,经x轴反射后,与圆(x-3)2+(y-2)2=1相切,求反射光线所在直线的方程.

查看答案和解析>>

同步练习册答案