精英家教网 > 高中数学 > 题目详情
x∈[-
π
6
3
]
时,函数f(x)=Asin(ωx+θ) (A>0,ω>0,|θ|<
π
2
)
的图象如图所示.
(1)求函数f(x)在[-
π
6
3
]
上的表达式;
(2)求方程f(x)=
2
2
[-
π
6
3
]
的解集.
分析:(1)根据图象,
T
4
=
3
-
π
6
,可求得ω,利用ω•
π
6
=
π
2
可求得θ,f(0)=
3
2
,可求得A;
(2)由
f(x)=
2
2
f(x)=Asin(ωx+θ) (A>0,ω>0,|θ|<
π
2
)
可求得其解集.
解答:解:(1)∵
T
4
=
3
-
π
6
=
π
2
,∴T=2π,ω=1;又1•
π
6
+θ=
π
2
,∴θ=
π
3
;由f(0)=
3
2
,得A=1;
f(x)=sin(x+
π
3
)

(2)由
f(x)=
2
2
f(x)=sin(x+
π
3
) ( -
π
6
≤x≤ 
3
)
解得:x=-
π
12
或x=
12

∴方程f(x)=
2
2
[-
π
6
3
]
的解集为:{-
π
12
12
}
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,着重考查其周期,相位,与振幅的确定,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
sin4x+cos4x+sin2xcos2x
2-sin2x
-
1-cosx
4sin2
x
2

(1)判断函数f(x)的奇偶性.
(2)当x∈(
π
6
π
2
)
时,求函数f(x)的值域.
(3)若
a
=(sinα,1),
b
=(cosα,1)
并且
a
b
,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
,x∈R)
的图象的一部分如下图所示.
(1)求函数f(x)的解析式;
(2)当x∈[-6,2]时,求函数g(x)=f(x)+f(x+2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2sinx,cosx),
b
=(
3
cosx,2cosx)
,函数f(x)=
a
b

(1)求f(x)的最小正周期;
(2)当x∈[-
π
6
π
2
]
时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知定义在区间[-π,
2
3
π]上的函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ≤π)的图象关于直线x=-
π
6
对称,当x∈[-
π
6
3
]时,f(x)的图象如图所示.
(1)求f(x)在[-π,
2
3
π]上的表达式;
(2)求方程f(x)=
2
2
的解.

查看答案和解析>>

同步练习册答案