精英家教网 > 高中数学 > 题目详情
已知定点A(0,1)、B(0,-1)、C(1,0),动点P满足·=k||2.
(1) 求动点P的轨迹方程,并说明方程表示的曲线.
(2) 当k=2时,求|2|的最大值和最小值
(1)设动点的坐标为P(x,y),则
=(x,y-1),=(x,y+1),=(1-x,-y).
·=k||2, ∴x2+y2-1=k[(x-1)2+y2], ∴(1-k)x2+(1-k)y2+2kx-k-1=0.
若k=1,则方程为x=1,表示过点(1,0)且平行于y轴的直线.
若k≠1,则方程化为2+y22
表示以为圆心,以为半径的圆.
(2)当k=2时,方程化为(x-2)2+y2=1.
∵2=2(x,y-1)+(x,y+1)=(3x,3y-1),
∴|2|=.
又∵(x-2)2+y2=1,则令x=2+cosθ,y=sinθ,
于是有36x-6y-26=36cosθ-6sinθ+46=6cos(θ+φ)+46∈[46-6,46+6],
故|2|的最大值为=3+,最小值为-3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

轴上动点引抛物线的两条切线为切点.
(1)若切线的斜率分别为,求证: 为定值,并求出定值;
(2)求证:直线恒过定点,并求出定点坐标; 
(3)当最小时,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设不等边三角形ABC的外心与重心分别为M、G,若A(-1,0),B(1,0)且MG//AB.
(Ⅰ)求三角形ABC顶点C的轨迹方程;
(Ⅱ)设顶点C的轨迹为D,已知直线过点(0,1)并且与曲线D交于P、N两点,若O为坐标原点,满足OP⊥ON,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1
(1)求曲线C的方程.
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有?若存在,求出m的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在同一坐标系下,下列曲线中,右焦点与抛物线y2=4x的焦点重合的是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以下命题正确的有________________.
①到两个定点 距离的和等于定长的点的轨迹是椭圆;
②“若,则”的逆否命题是“若,则ab≠0”;
③若两个平面垂直,则一个平面内的已知直线必垂直于另一个平面的任意一条直线;
④两圆在交点处的切线互相垂直,那么实数的值为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.
(1)求该抛物线的方程;
(2)为坐标原点,是否存在平行于的直线,使得直线与抛物线有公共点,且直线的距离为?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列三个命题:①若直线过抛物线的焦点,且与这条抛物线交于两点,则的最小值为;②双曲线的离心率为;③若,则这两圆恰有条公切线.④若直线与直线互相垂直,则
其中正确命题的序号是          .(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是直角三角形的三边(为斜边),则圆截直线所得的弦长等于
A.B.C.D.

查看答案和解析>>

同步练习册答案