精英家教网 > 高中数学 > 题目详情
已知函数f(x)=5
3
cosxsinx+5cos2x+1

(Ⅰ)求函数f(x)的周期及f(x)的最大值和最小值;
(Ⅱ)求f(x)在[0,π]上的单调递增区间.
(Ⅰ)函数f(x)=5
3
cosxsinx+5cos2x+1
=
5
3
2
sin2x
+5
1+cos2x
2
+1=5sin(2x+
π
6
)+
7
2

函数f(x)的周期T=
2
=π,
函数f(x)的最大值为
17
2
和最小值-
13
2

(Ⅱ)由(Ⅰ),f(x)=5sin(2x+
π
6
)+
7
2

再由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
(k∈Z),
解得kπ-
π
3
≤x≤kπ+
π
6
(k∈Z).当k=0时,-
π
3
≤x≤
π
6
,所以0≤x≤
π
6

k=1时
3
≤x≤
6
,∴
3
≤x≤π,
所以y=f(x)的单调增区间为[0,
π
6
],[
3
,π
].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、已知函数f(x)=k•4x-k•2x+1-4(k+5)在区间[0,2]上存在零点,则实数k的取值范围是
(-∞,-4]∪[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3(ax+b)的图象经过点A(2,1)和B(5,2),记an=3f(n),n∈N*
(1)求数列{an}的通项公式;
(2)设bn=
an2n
Tn=b1+b2+…+bn
,,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-5      x<-3
2x+1  -3≤x≤2
5         x>2
(1)求函数值f(2),f[f(1)];(2)画出函数图象,并写出f(x)的值域.(不必写过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
5+2x
16-8x
,设正项数列{an}满足a1=l,an+1=f(an).
(I)写出a2,a3的值;
(Ⅱ)试比较an
5
4
的大小,并说明理由;
(Ⅲ)设数列{bn}满足bn=
5
4
-an,记Sn=
n
i=1
bi
.证明:当n≥2时,Sn
1
4
(2n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=5-2|x|,g(x)=x2-2x,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x),那么F(x) 的最大值为
 

查看答案和解析>>

同步练习册答案