精英家教网 > 高中数学 > 题目详情

如图,已知四边形均为正方形,平面平面.

(1)求证:平面
(2)求二面角的大小.

(1)详见解析;(2).

解析试题分析:(1)要证直线与平面垂直,只须证明这条直线与平面内的两条相交直线垂直或证明这条直线是两垂直平面中一个平面内的一条直线,且这条直线垂直于这两个平面的交线即可.本题属于后者,由平面平面且交线为,而平面,所以问题得证;(2)解决空间角最有效的工具是向量法,先以点为坐标原点,利用已有的垂直关系建立空间直角坐标系,为计算的方便,不妨设正方形的边长为1,然后标出有效点与有效向量的坐标,易知平面的法向量为,再利用待定系数法求出另一平面的法向量,接着计算出这两个法向量夹角的余弦值,根据二面角的图形与计算出的余弦值,确定二面角的大小即可.
试题解析:(1)因为平面平面,且平面平面
又因为四边形为正方形,所以
因为平面,所以平面       4分
(2)以为坐标原点,如图建立空间直角坐标系


所以平面的法向量为   5分
设平面的法向量为
因为

,则       6分
因为
所以二面角的大小为       8分.
考点:1.面面垂直的性质;2.线面垂直的证明;3.空间角的计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P­ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DCAB,∠BAD=90°,且AB=2AD=2DC=2PD=4,EPA的中点.
 
(1)求证:DE∥平面PBC
(2)求证:DE⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面平面是等腰直角三角形,,四边形是直角梯形,∥AE,,分别为的中点.

(1)求异面直线所成角的大小;
(2)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面平面,四边形为矩形,的中点,

(1)求证:
(2)若与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥,,,,,上一点,是平面的交点.

(1)求证:
(2)求证:
(3)求与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在棱长为2的正方体中,的中点.
(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,已知的直径,点上两点,且为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).

(Ⅰ)求证:
(Ⅱ)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,矩形中,,,分别为边上的点,且,,将沿折起至位置(如图2所示),连结,其中.

(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且

(Ⅰ)求证:EF∥平面BDC1
(Ⅱ)求二面角E-BC1-D的余弦值.

查看答案和解析>>

同步练习册答案