精英家教网 > 高中数学 > 题目详情
(2011•昌平区二模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F(-1,0),离心率为
2
2
,过点F的直线l与椭圆C交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F不与坐标轴垂直的直线交椭圆C于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.
分析:(Ⅰ)由题意可知:c=1,a2=b2-c2,e=
c
a
=
2
2
,由此能够求出椭圆的方程.
(II)设直线AB的方程为y=k(x+1)(k≠0),由
y=k(x+1)
x2
2
+y2=1
,得(1+2k2)x2+4k2x+2k2-2=0.由直线AB过椭圆的左焦点F,记A(x1,y1),B(x2,y2),AB的中点N(x0,y0),x1+x2=
-4k2
1+2k2
,x0=
x1+x2
2
y0=
y1+y2
2
,垂直平分线NG的方程为y-y0=-
1
k
(x-x0)
,由此能求出点G横坐标的取值范围.
解答:解:(Ⅰ)由题意可知:c=1,a2=b2-c2,e=
c
a
=
2
2
…(2分)
解得:a=
2
,b=1(3分)
故椭圆的方程为:
x2
2
+y2
=1(4分)
(II)设直线AB的方程为y=k(x+1)(k≠0),(5分)
联立,得
y=k(x+1)
x2
2
+y2=1

整理得(1+2k2)x2+4k2x+2k2-2=0(7分)
∵直线AB过椭圆的左焦点F∴方程有两个不等实根.(8分)
记A(x1,y1),B(x2,y2),AB的中点N(x0,y0
则x1+x2=
-4k2
1+2k2
(9分)
x0=
x1+x2
2
y0=
y1+y2
2
(10分)
垂直平分线NG的方程为y-y0=-
1
k
(x-x0)
,(11分)
令y=0,得xG=x0+ky0=-
2k2
2k2+1
+
k2
2k2+1
=-
k2
2k2+1

=-
1
2
+
1
4k2+2
.(12分)
∵k≠0,∴-
1
2
xG
<0(13分)
∴点G横坐标的取值范围为(-
1
2
,0).(14分)
点评:本题主要考查直线与圆锥曲线的综合应用能力,综合性强,是高考的重点,易错点是知识体系不牢固.本题具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•昌平区二模)已知集合A={x|x≥3},B={1,2,3,4},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•昌平区二模)一个正方形的内切圆半径为2,向该正方形内随机投一点P,点P恰好落在圆内的概率是
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•昌平区二模)如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点.
(1)求证:BD1∥平面A1DE;
(2)求证:D1E⊥A1D;
(3)在线段AB上是否存在点M,使二面角D1-MC-D的大小为
π6
?若存在,求出AM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•昌平区二模)已知集合A={x|x≥3},B={x|(x-2)(x-4)<0},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•昌平区二模)若不等式组
x+2y-5≤0
x≥1
y≥1
表示的平面区域是一个三角形,则此三角形的面积是
1
1
;若x,y满足上述约束条件,则z=x-y的最大值是
2
2

查看答案和解析>>

同步练习册答案