设不等式2x-1>m(x2-1)对满足|m|≤2的一切实数m的取值都成立.求x的取值范围.
|
解:问题可变成关于m的一次不等式:(x 解得x∈( 分析:此问题由于常见的思维定势,易把它看成关于x的不等式讨论.然而,若变换一个角度以m为变量,即关于m的一次不等式(x 说明:本题的关键是变换角度,以参数m作为自变量而构造函数式,不等式问题变成函数在闭区间上的值域问题.本题有别于关于x的不等式2x-1>m(x 一般地,在一个含有多个变量的数学问题中,确定合适的变量和参数,从而揭示函数关系,使问题更明朗化.或者在含有参数的函数中,将函数自变量作为参数,而参数作为函数,更具有灵活性,从而巧妙地解决有关问题. |
科目:高中数学 来源: 题型:
(1)设不等式2x-1>m(x2-1)对满足|m|≤2的一切实数m的取值都成立,求x的取值范围;
(2)是否存在m使得不等式2x-1>m(x2-1)对满足|x|≤2的一切实数x的取值都成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com