精英家教网 > 高中数学 > 题目详情
8.在△ABC中,a,b,c分别是角A,B,C的对边,a=8,b=4,A=60°,则cosB=(  )
A.$\frac{\sqrt{13}}{4}$B.$\frac{\sqrt{3}}{4}$C.-$\frac{\sqrt{3}}{4}$D.-$\frac{\sqrt{13}}{4}$

分析 由已知及正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{3}}{4}$,由b<a,可得范围B<60°,利用同角三角函数基本关系式即可得解cosB的值.

解答 解:∵a=8,b=4,A=60°,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{4×\frac{\sqrt{3}}{2}}{8}$=$\frac{\sqrt{3}}{4}$,
∵b<a,
∴B<60°,
∴cosB=$\frac{\sqrt{13}}{4}$.
故选:A.

点评 本题主要考查了正弦定理,大边对大角,同角三角函数基本关系式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知二次函数f(x)=ax2-2ax+2+b在区间[2,3]上有最大值5,最小值2.
(1)求f(x)的解析式;
(2)若b>1,g(x)=f(x)+mx在[2,4]上为单调函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,在长方体ABCD-A1B1C1D1中,已知A1A=1,AD=1,AB=$\sqrt{2}$,则体对角线AC1与平面ABCD所成角的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱锥S-ABC中,∠ABC=90°,SA⊥平面ABC,点A在SB和SC上的射影分别为E、D.
(1)求证:DE⊥SC;
(2)若SA=AB=BC=1,求直线AD与平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在空间中,“直线a,b没有公共点”是“直线a,b互为异面直线”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(普通中学做)已知数列{an}为等差数列,a3=3,a7=7,数列{bn}的前n项和为Sn,且Sn=2bn-2
(1)求{an}、{bn}的通项公式
(2)若cn=$\frac{{a}_{n}}{{b}_{n}}$,数列{cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为弘扬民族古典文化,市电视台举行古诗词知识竞赛,某轮比赛由节目主持人随机从题库中抽取题目让选手抢答,回答正确将给该选手记正10分,否则记负10分.根据以往统计,某参赛选手能答对每一个问题的概率均为$\frac{2}{3}$;现记“该选手在回答完n个问题后的总得分为Sn”.
(1)求S6=20且Si≥0(i=1,2,3)的概率;
(2)记X=|S5|,求X的分布列,并计算数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知平面上两点A(-1,1),B(5,9),则|AB|=(  )
A.10B.20C.30D.40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从1,2,3,4,5,6,7这7个数字中,任取2个数字相加,其和为偶数的概率是(  )
A.$\frac{3}{7}$B.$\frac{4}{7}$C.$\frac{1}{3}$D.$\frac{8}{21}$

查看答案和解析>>

同步练习册答案