精英家教网 > 高中数学 > 题目详情
已知角α的顶点与直角坐标系的原点重合,始边在x的正半轴上,终边在y=-2x且x≤0,求sin(2α+
3
)的值.
分析:由题意根据任意角的三角函数定义求出sinα与cosα的值,进而确定出sin2α与cos2α的值,所求式子利用两角和与差的正弦函数公式化简后,将各自的值代入计算即可求出值.
解答:解:根据题意得:sinα=
2
5
,cosα=-
1
5

∴sin2α=2sinαcosα=-
4
5
,cos2α=cos2α-sin2α=-
3
5

则sin(2α+
3
)=sin2αcos
3
+cos2αsin
3
=
2
5
-
3
3
10
点评:此题考查了两角和与差的正弦函数公式,以及任意角的三角函数定义,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正△ABC的顶点A在平面α上,顶点B,C在平面α的同一侧,D为BC的中点,若△ABC在平面α上的射影是以A为直角顶点的三角形,则直线AD与平面α所成角的正弦值的范围是(  )
A、[
6
3
,1)
B、[
6
3
3
2
)
C、[
1
2
3
2
)
D、(
1
2
6
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的顶点与直角坐标系的原点重合,始边在x轴的正半轴上,终边经过点P(-1,2),
求(1)sinα,cosα,tanα
(2)
sin(α-5π)cos(-
π
2
-α)cos(8π-α)
sin(α-
2
)sin(-α-4π)tan(α+π)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正△ABC的顶点A在平面α上,顶点B、C在平面α的同一侧,D为BC的中点,若△ABC在平面α上的投影是以A为直角顶点的三角形,则直线AD与平面α所成角的正弦值的范围为
[
6
3
3
2
)
[
6
3
3
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的顶点与直角坐标系的原点重合,始边在x轴的正半轴上,终边经过点P(-1,2),求sin(2α+
4
)+tan(2α-π)
的值.

查看答案和解析>>

同步练习册答案