精英家教网 > 高中数学 > 题目详情
选修4-2:(矩阵与变换)
已知a,b∈R,若矩阵M=
-1a
b3
所对应的变换把直线l:2x-y=3变换为自身,求a,b的值.
分析:因为矩阵M=
-1a
b3
所对应的变换把直线l:2x-y=3变换为自身,也就是说直线l上的点经过变换后没有变,我们可以任取直线l上的两点,对其进行变换列出两个方程,通过解方程求得a,b的值.
解答:解:(方法一)在直线l上取两点(
3
2
,0),(0,-3).
因为 
-1a
b3
 
3
2
0
=
-
3
2
3
2
b
-1a
b3
 
0
-3
=
-3a
-9
,…(6分)
因为M对应的变换把直线变换为自身,所以点(-
3
2
3
2
b),(-3a,-9)仍在直线l上.
代入直线方程得
-3-
3
2
b=3
-6a+9=3
解得
a=1
b=-4
…(10分)
(方法二)设(x,y)为直线l上任意一点,则
-1a
b3
 
x
y
=
-x+ay
bx+3y
,…(3分)
因为M对应的变换把直线变换为自身,所以点(-x+ay,bx+3y)仍在直线l上,
代入直线方程得:2(-x+ay)-(bx+3y)=3,…(7分)
化简得(-2-b)x+(2a-3)y=3,又直线l:2x-y=3,
所以
-2-b=2
2a-3=-1
解得
a=1
b=-4
…(10分)
点评:此题考查在特殊变换下的不变直线,我们可以根据特殊值法进行求解,是非常方便的,这也是高考中常用的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[
 
1
1
],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2
2
sin(θ-
π
4
),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省南京市四区县高三(上)联考数学试卷(解析版) 题型:解答题

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2sin(),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省无锡市滨湖区梅村高级中学高三(上)11月月考数学试卷(理科)(解析版) 题型:解答题

选修4-2:(矩阵与变换)
已知a,b∈R,若矩阵M=所对应的变换把直线l:2x-y=3变换为自身,求a,b的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省南京市四区县高三(上)联考数学试卷(解析版) 题型:解答题

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2sin(),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

同步练习册答案