精英家教网 > 高中数学 > 题目详情
在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[
 
1
1
],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2
2
sin(θ-
π
4
),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.
分析:A.因为PA,PB为圆O的两条切线,所以OP垂直平分弦AB,在Rt△OAP中,OM•MP=AM2,圆O中,AM•BM=CM•DM,由此能够证明O,C,P,D四点共圆.
B.设M=
ab
cd
,则
ab
cd
1
1
=3
1
1
=
3
3
ab
cd
-1
2
=
9
15
,由此能求出M.
C.将ρ=2
2
sin(θ-
π
4
),
x=1+
4
5
t
y=-1-
3
5
t
分别化为普通方程:x2+y2+2x-2y=0,3x+4y+1=0,由此能求出弦长.
D.由柯西不等式知:(x+y+z)2≤[(
2
x
2+(
3
y
2+z2]•[(
1
2
2+(
1
3
2+12],故2x2+3y2+z2
24
11
,由此能求出2x2+3y2+z2的最小值.
解答:A.选修4-1:(几何证明选讲)
证明:因为PA,PB为圆O的两条切线,
所以OP垂直平分弦AB,
在Rt△OAP中,OM•MP=AM2,…(4分)
在圆O中,AM•BM=CM•DM,
所以OM•MP=CM•DM,…(8分)
又弦CD不过圆心O,所以O,C,P,D四点共圆.…(10分)
B.选修4-2:(矩阵与变换)
设M=
ab
cd
,则
ab
cd
1
1
=3
1
1
=
3
3

a+b=3
c+d=3
.…(4分)
ab
cd
-1
2
=
9
15
,故
-a+2b=9
-c+2d=15
.…(7分)
联立以上两方程组解得a=-1,b=4,c=-3,d=6,
故M=
-14
-36
. …(10分)
C.选修4-4:(坐标系与参数方程)
解:将方程ρ=2
2
sin(θ-
π
4
),
x=1+
4
5
t
y=-1-
3
5
t
分别化为普通方程:
x2+y2+2x-2y=0,3x+4y+1=0,…(6分)
由曲线C的圆心为C(-1,1),半径为
2

所以圆心C到直线l的距离为
2
5

故所求弦长为2
2-(
2
5
)2
=
2
46
5
.…(10分)
D.选修4-5(不等式选讲)
解:由柯西不等式可知:
(x+y+z)2≤[(
2
x
2+(
3
y
2+z2]•[(
1
2
2+(
1
3
2+12],…(5分)
2x2+3y2+z2
24
11

当且仅当
2
x
1
2
=
3
y
1
3
=
z
1

即:x=
6
11
,y=
4
11
,z=
12
11
时,
2x2+3y2+z2取得最小值为
4
11
.…(10分)
点评:A考查与圆有关的比例线段的应用,B考查矩阵与变换的应用,C考查极坐标与参数方程的应用,D考查柯西不等式的应用,解题时要认真审题,仔细解答,注意等价转化思想的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答题纸指定区域内 作答.解答应写出文字说明、证明过程或演算步骤.
A.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.
B.已知二阶矩阵A=
2a
b0
属于特征值-1的一个特征向量为
1
-3
,求矩阵A的逆矩阵.

C.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为
x=-
3
t
y=1+t
(t为参数,t∈{R}).试求曲线C上点M到直线l的距离的最大值.
D.(1)设x是正数,求证:(1+x)(1+x2)(1+x3)≥8x3
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,请给出证明;如果不成立,请举出一个使它不成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.
A选修4-1:几何证明选讲
如图,延长⊙O的半径OA到B,使OA=AB,DE是圆的一条切线,E是切点,过点B作DE的垂线,垂足为点C.
求证:∠ACB=
1
3
∠OAC.
B选修4-2:矩阵与变换
已知矩阵A=
.
11
21
.
,向量
β
=
1
2
.求向量
a
,使得A2
a
=
β

C选修4-3:坐标系与参数方程
已知椭圆C的极坐标方程为ρ2=
a
3cos2θ+4sin2θ
,焦距为2,求实数a的值.
D选修4-4:不等式选讲
已知函数f(x)=(x-a)2+(x-b)2+(x-c)2+
(a+b+c)2
3
(a,b.c为实数)的最小值为m,若a-b+2c=3,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做题)在A,B,C,D四小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过
N点的切线交CA的延长线于P.
(1)求证:PM2=PA•PC;
(2)若⊙O的半径为2
3
,OA=
3
OM,求MN的长.
B.选修4-2:矩阵与变换
曲线x2+4xy+2y2=1在二阶矩阵M=
.
1a
b1
.
的作用下变换为曲线x2-2y2=1,求实数a,b的值;
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的极坐标方程为ρ=
2
cos(θ+
π
4
)
,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
y=-1-
3
5
(t为参数),求直线l被圆C所截得的弦长.
D.选修4-5:不等式选讲
设a,b,c均为正实数.
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求证:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,PA切⊙O于点A,D为PA的中点,过点D引割线交⊙O于B、C两点.求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
设M=
.
10
02
.
,N=
.
1
2
0
01
.
,试求曲线y=sinx在矩阵MN变换下的曲线方程.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的极坐标方程为ρ=
2
cos(θ+
π
4
)
,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被圆C所截得的弦长.
D.选修4-5:不等式选讲
解不等式:|2x+1|-|x-4|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

 选做题(在A、B、C、D四小题中只能选做两题,并将选作标记用2B铅笔涂黑,每小题10分,共20分,请在答题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).
A、(选修4-1:几何证明选讲)
如图,BD为⊙O的直径,AB=AC,AD交BC于E,求证:AB2=AE•AD
B、(选修4-2:矩形与变换)
已知a,b实数,如果矩阵M=
1a
b2
所对应的变换将直线3x-y=1变换成x+2y=1,求a,b的值.
C、(选修4-4,:坐标系与参数方程)
设M、N分别是曲线ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的动点,判断两曲线的位置关系并求M、N间的最小距离.
D、(选修4-5:不等式选讲)
设a,b,c是不完全相等的正数,求证:a+b+c>
ab
+
bc
+
ca

查看答案和解析>>

同步练习册答案