精英家教网 > 高中数学 > 题目详情
 选做题(在A、B、C、D四小题中只能选做两题,并将选作标记用2B铅笔涂黑,每小题10分,共20分,请在答题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).
A、(选修4-1:几何证明选讲)
如图,BD为⊙O的直径,AB=AC,AD交BC于E,求证:AB2=AE•AD
B、(选修4-2:矩形与变换)
已知a,b实数,如果矩阵M=
1a
b2
所对应的变换将直线3x-y=1变换成x+2y=1,求a,b的值.
C、(选修4-4,:坐标系与参数方程)
设M、N分别是曲线ρ+2sinθ=0和ρsin(θ+
π
4
)=
2
2
上的动点,判断两曲线的位置关系并求M、N间的最小距离.
D、(选修4-5:不等式选讲)
设a,b,c是不完全相等的正数,求证:a+b+c>
ab
+
bc
+
ca
分析:A 利用△ABE∽△ADB,得到
AB
AD
=
AE
AB
,即可得到 AB2=AE•AD.
B 设点(x,y)是直线3x-y=1上的任意一点,在矩阵M的作用下点变成(x,y),由条件可得
x+ay=x
bx+2y=y
,把
 (x,y) 代入x+2y=1化简,应为3x-y=1,比较系数求出a,b的值.
C 把曲线的极坐标方程化为直角坐标方程可得分别表示圆和一条直线,利用点到直线的距离公式可得直线和圆相离,
从而求得M、N间的最小距离.
D 由条件得到三个基本不等式,相加化简可得结论.
解答:解:A、证明:由AB=AC得∠ABC=∠C,又∠C=∠D,∴∠ABC=∠D.
又∠BAE=∠DAB,∴△ABE∽△ADB,∴
AB
AD
=
AE
AB
,即 AB2=AE•AD.
B、解:设点(x,y)是直线3x-y=1上的任意一点,在矩阵M的作用下点变成(x,y),
.
1a
b2
.
.
x
y
.
=
.
x
y
.
,∴
x+ay=x
bx+2y=y

因为(x,y)在x+2y=1上,∴x+ay+2(bx+2y)=1,即 (1+2b)x+(a+4)y=1,∴
1+2b=3
a+4=-1

解得a=-5,b=1.
C、解:曲线ρ+2sinθ=0 化为直角坐标方程为x2+y2+2y=0,即x2+(y-1)2=1,
表示以C(0,-1)为圆心,以1为半径的圆.
把ρsin(θ+
π
4
)=
2
2
化为直角坐标方程为 x+y-1=0,表示一条直线,圆心C到直线的距离
|-1-1|
2
=
2
>1,故直线和圆相离,故M、N间的最小距离为
2
-1.
D、证明:∵a,b,c是不完全相等的正数,∴a+b≥2
ab
c+b≥2
cb
a+c≥2
ac

且这三个式子不能同时取等号.
这三个式子相加可得2(a+b+c)>2(
ab
+
bc
+
ac
),即 a+b+c>
ab
+
bc
+
ca
点评:本题主要考查把极坐标方程化为直角坐标方程的方法,简单的矩阵运算和利用基本不等式证明不等式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【选做题】在A,B,C,D四小题中只能选做2题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.
21-1.(选修4-2:矩阵与变换)
设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1在M-1的作用下的新曲线的方程.
21-2.(选修4-4:参数方程)
以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,
π
2
),若直线l过点P,且倾斜角为 
π
3
,圆C以M为圆心、4为半径.
(1)求直线l关于t的参数方程和圆C的极坐标方程;
(2)试判定直线l和圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做题)在A,B,C,D四小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过
N点的切线交CA的延长线于P.
(1)求证:PM2=PA•PC;
(2)若⊙O的半径为2
3
,OA=
3
OM,求MN的长.
B.选修4-2:矩阵与变换
曲线x2+4xy+2y2=1在二阶矩阵M=
.
1a
b1
.
的作用下变换为曲线x2-2y2=1,求实数a,b的值;
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的极坐标方程为ρ=
2
cos(θ+
π
4
)
,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
y=-1-
3
5
(t为参数),求直线l被圆C所截得的弦长.
D.选修4-5:不等式选讲
设a,b,c均为正实数.
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求证:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做题)在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
(B)(选修4-2:矩阵与变换)
二阶矩阵M有特征值λ=8,其对应的一个特征向量e=
1
1
,并且矩阵M对应的变换将点(-1,2)变换成点(-2,4),求矩阵M2
(C)(选修4-4:坐标系与参数方程)
已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为
x=-
3
t
y=1+t
(t为参数,t∈R).试在曲线C上一点M,使它到直线l的距离最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,AD是∠BAC的平分线,⊙O过点A且与BC边相切于点D,与AB、AC分别交于E,F,求证:EF∥BC.

B.选修4-2:矩阵与变换
已知a,b∈R若矩阵M=
.
-1a
b3
.
所对应的变换把直线l:2x-y=3变换为自身,求a,b的值.

C.选修4-4:坐标系与参数方程
将参数方程
x=2(t+
1
t
)
y=4(t-
1
t
)
(t为参数)化为普通方程.
D.选修4-5:不等式选讲
已知a,b是正数,求证:(a+
1
b
)(2b+
1
2a
)≥
9
2

查看答案和解析>>

同步练习册答案