£¨Ñ¡×öÌ⣩ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ð¾íÖ½Ö¸¶¨ÇøÓòÄÚ×÷´ð£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
£¨B£©£¨Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£©
¶þ½×¾ØÕóMÓÐÌØÕ÷Öµ¦Ë=8£¬Æä¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿e=
1
1
£¬²¢ÇÒ¾ØÕóM¶ÔÓ¦µÄ±ä»»½«µã£¨-1£¬2£©±ä»»³Éµã£¨-2£¬4£©£¬Çó¾ØÕóM2£®
£¨C£©£¨Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì£©
ÒÑÖª¼«×ø±êϵµÄ¼«µãÔÚÖ±½Ç×ø±êϵµÄÔ­µã£¬¼«ÖáÓëxÖáµÄÕý°ëÖáÖغϣ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È+3¦Ñ2sin2¦È=3£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=-
3
t
y=1+t
£¨tΪ²ÎÊý£¬t¡ÊR£©£®ÊÔÔÚÇúÏßCÉÏÒ»µãM£¬Ê¹Ëüµ½Ö±ÏßlµÄ¾àÀë×î´ó£®
·ÖÎö£º£¨B£©ÀûÓþØÕóµÄÌØÕ÷ÖµÓëÌØÕ÷ÏòÁ¿µÄ¹Øϵ¼°¾ØÕóµÄÔËËã¼´¿ÉÇó³ö£»
£¨C£©ÏȰѼ«×ø±ê·½³ÌºÍ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬ÔÙÀûÓõ㵽ֱÏߵľàÀ빫ʽ¼´¿ÉÇó³ö£®
½â´ð£º£¨B£©½â£ºÉèM=
ab
cd
£¬ÔòÓÉ
a-8b
cd-8
 
1
1
=
0
0
£¬µÃ
a-8+b=0
c+d-8=0
£¬
¼´a+b=8£¬c+d=8£®
ÓÉ
ab
cd
-1
2
=
-2
4
£¬µÃ
-a+2b
-c+2d
=
-2
4
£¬
´Ó¶ø-a+2b=-2£¬-c+2d=4£®
ÓÉa+b=8£¬-a+2b=-2£¬c+d=8£¬-c+2d=4½âµÃa=6£¬b=2£¬c=4£¬d=4
¡àM=
62
44
£¬M2=
62
44
62
44
=
4420
4024
£®
£¨C£©½â£ºÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È+3¦Ñ2sin2¦È=3£¬
¿ÉµÃCµÄÆÕͨ·½³ÌÊÇx2+3y2=3£¬
¼´
x2
3
+y2
=1£®
ÓÉÖ±ÏßlµÄ²ÎÊý·½³ÌΪ
x=-
3
t
y=1+t
£¨tΪ²ÎÊý£¬t¡ÊR£©ÏûÈ¥²ÎÊýtdµÃ
Ö±ÏßlµÄÆÕͨ·½³ÌÊÇx+
3
y-
3
=0£®
ÉèµãMµÄ×ø±êÊÇ(
3
cos¦È£¬sin¦È)
£¬ÔòµãMµ½Ö±ÏßlµÄ¾àÀëÊÇ
d=
|
3
cos¦È+
3
sin¦È-
3
|
2
=
3
|
2
sin(¦È+
¦Ð
4
)-1|
2
£®
µ±sin(¦È+
¦Ð
4
)=-1
ʱ£¬
¼´¦È+
¦Ð
4
=2k¦Ð+
3¦Ð
2
£¬k¡ÊZ£¬½âµÃ¦È=2k¦Ð+
5¦Ð
4
£¬k¡ÊZdÈ¡µÃ×î´óÖµ£¬
´Ëʱ
3
cos¦È=-
6
2
£¬sin¦È=-
2
2
£¬
×ÛÉÏ£¬µãMµÄ×ø±êÊÇ(-
6
2
£¬-
2
2
)
ʱ£¬Mµ½Ö±ÏßlµÄ¾àÀë×î´ó£®
µãÆÀ£ºÊìÁ·ÕÆÎÕ¾ØÕóµÄÌØÕ÷ÖµÓëÌØÕ÷ÏòÁ¿µÄ¹Øϵ¼°¾ØÕóµÄÔËËã¡¢Ö±ÏßÓëԲ׶ÇúÏßµÄλÖùØϵ¼°ÀûÓõ㵽ֱÏߵľàÀ빫ʽÇó×îÖµÎÊÌâÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Ñ¡×öÌ⣩ÔÚA£¬B£¬C£¬DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ðÌ⿨ָ¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬¡ÑOµÄ°ë¾¶OB´¹Ö±ÓÚÖ±¾¶AC£¬MΪAOÉÏÒ»µã£¬BMµÄÑÓ³¤Ïß½»¡ÑOÓÚN£¬¹ý
NµãµÄÇÐÏß½»CAµÄÑÓ³¤ÏßÓÚP£®
£¨1£©ÇóÖ¤£ºPM2=PA•PC£»
£¨2£©Èô¡ÑOµÄ°ë¾¶Îª2
3
£¬OA=
3
OM£¬ÇóMNµÄ³¤£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÇúÏßx2+4xy+2y2=1ÔÚ¶þ½×¾ØÕóM=
.
1a
b1
.
µÄ×÷ÓÃϱ任ΪÇúÏßx2-2y2=1£¬ÇóʵÊýa£¬bµÄÖµ£»
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=
2
cos(¦È+
¦Ð
4
)
£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=1+
4
5
y=-1-
3
5
£¨tΪ²ÎÊý£©£¬ÇóÖ±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
Éèa£¬b£¬c¾ùΪÕýʵÊý£®
£¨1£©Èôa+b+c=1£¬Çóa2+b2+c2µÄ×îСֵ£»
£¨2£©ÇóÖ¤£º
1
2a
+
1
2b
+
1
2c
¡Ý
1
b+c
+
1
c+a
+
1
a+b
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×öÌ⣺ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²20·Ö£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬PAÇСÑOÓÚµãA£¬DΪPAµÄÖе㣬¹ýµãDÒý¸îÏß½»¡ÑOÓÚB¡¢CÁ½µã£®ÇóÖ¤£º¡ÏDPB=¡ÏDCP£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÉèM=
.
10
02
.
£¬N=
.
1
2
0
01
.
£¬ÊÔÇóÇúÏßy=sinxÔÚ¾ØÕóMN±ä»»ÏµÄÇúÏß·½³Ì£®
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=
2
cos(¦È+
¦Ð
4
)
£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=1+
4
5
t
y=-1-
3
5
t
£¨tΪ²ÎÊý£©£¬ÇóÖ±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
½â²»µÈʽ£º|2x+1|-|x-4|£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

 Ñ¡×öÌ⣨ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×öÁ½Ì⣬²¢½«Ñ¡×÷±ê¼ÇÓÃ2BǦ±ÊÍ¿ºÚ£¬Ã¿Ð¡Ìâ10·Ö£¬¹²20·Ö£¬ÇëÔÚ´ðÌâÖ¸¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裩£®
A¡¢£¨Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²£©
Èçͼ£¬BDΪ¡ÑOµÄÖ±¾¶£¬AB=AC£¬AD½»BCÓÚE£¬ÇóÖ¤£ºAB2=AE•AD
B¡¢£¨Ñ¡ÐÞ4-2£º¾ØÐÎÓë±ä»»£©
ÒÑÖªa£¬bʵÊý£¬Èç¹û¾ØÕóM=
1a
b2
Ëù¶ÔÓ¦µÄ±ä»»½«Ö±Ïß3x-y=1±ä»»³Éx+2y=1£¬Çóa£¬bµÄÖµ£®
C¡¢£¨Ñ¡ÐÞ4-4£¬£º×ø±êϵÓë²ÎÊý·½³Ì£©
ÉèM¡¢N·Ö±ðÊÇÇúÏߦÑ+2sin¦È=0ºÍ¦Ñsin£¨¦È+
¦Ð
4
£©=
2
2
ÉϵĶ¯µã£¬ÅжÏÁ½ÇúÏßµÄλÖùØϵ²¢ÇóM¡¢N¼äµÄ×îС¾àÀ룮
D¡¢£¨Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£©
Éèa£¬b£¬cÊDz»ÍêÈ«ÏàµÈµÄÕýÊý£¬ÇóÖ¤£ºa+b+c£¾
ab
+
bc
+
ca
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×öÌ⣺ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ð¾íÖ½Ö¸¶¨ÇøÓòÄÚ×÷´ð£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬ADÊÇ¡ÏBACµÄƽ·ÖÏߣ¬¡ÑO¹ýµãAÇÒÓëBC±ßÏàÇÐÓÚµãD£¬ÓëAB¡¢AC·Ö±ð½»ÓÚE£¬F£¬ÇóÖ¤£ºEF¡ÎBC£®

B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖªa£¬b¡ÊRÈô¾ØÕóM=
.
-1a
b3
.
Ëù¶ÔÓ¦µÄ±ä»»°ÑÖ±Ïßl£º2x-y=3±ä»»Îª×ÔÉí£¬Çóa£¬bµÄÖµ£®

C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
½«²ÎÊý·½³Ì
x=2(t+
1
t
)
y=4(t-
1
t
)
£¨tΪ²ÎÊý£©»¯ÎªÆÕͨ·½³Ì£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÒÑÖªa£¬bÊÇÕýÊý£¬ÇóÖ¤£º£¨a+
1
b
£©£¨2b+
1
2a
£©¡Ý
9
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸