精英家教网 > 高中数学 > 题目详情
已知曲线C上任意一点M到点F(1,0)的距离比它到直线l:x=-2的距离小1.
(1)求曲线C的方程;
(2)斜率为1的直线l过点F,且与曲线C交与A、B两点,求线段AB的长.
分析:(1)由已知:点M到F(1,0)的距离与它到直线l':x=-1的距离相等,所以点M的轨迹C是以F为焦点,l'为准线的抛物线,由此能求出曲线C的方程.
(2)设交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由抛物线的定义可得|AF|=dA=x1+1|BF|=dB=x2+1,于是|AB|=|AF|+|BF|=x1+x2+2,由此能求出线段AB的长.
解答:解:(1)由已知条件知,
点M到F(1,0)的距离与它到直线l':x=-1的距离相等,
∴点M的轨迹C是以F为焦点,
l'为准线的抛物线,
∴曲线C的方程为y2=4x.…(4分)
(2)设交点A,B的坐标分别为A(x1,y1),B(x2,y2),
则由抛物线的定义可得|AF|=dA=x1+1|BF|=dB=x2+1…(6分)
于是|AB|=|AF|+|BF|=x1+x2+2
由条件知直线l方程为:y=x-1代入y2=4x,
得 (x-1)2=4x
即 x2-6x+1=0∴x1+x2=6,
故|AB|=x1+x2+2=8.…(10分)
点评:本题主要考查直线与圆锥曲线的综合应用能力,综合性强,是高考的重点,易错点是知识体系不牢固.本题具体涉及到轨迹方程的求法及直线与双曲线的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C上任意一点M到点F(0,1)的距离比它到直线l:y=-2的距离小1.
(1)求曲线C的方程;
(2)过点P(2,2)的直线与曲线C交于A、B两点,设
AP
PB
.当△AOB的面积为4
2
时(O为坐标原点),求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知曲线C上任意一点到点M(0,
1
2
)的距离与到直线y=-
1
2
的距离相等.
(Ⅰ)求曲线C的方程;
(Ⅱ)设A1(x1,0),A2(x2,0)是x轴上的两点(x1+x2≠0,x1x2≠0),过点A1,A2分别作x轴的垂线,与曲线C分别交于点A1′,A2′,直线A1′A2′与x轴交于点A3(x3,0),这样就称x1,x2确定了x3.同样,可由x2,x3确定了x4.现已知x1=6,x2=2,求x4的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•松江区三模)在平面直角坐标系中,O为坐标原点.已知曲线C上任意一点P(x,y)(其中x≥0)到定点F(1,0)的距离比它到y轴的距离大1,直线l与曲线C相交于不同的A,B两点.
(1)求曲线C的轨迹方程;
(2)若直线l经过点F(1,0),求
OA
OB
的值;
(3)若
OA
OB
=-4
,证明直线l必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,O为坐标原点.已知曲线C上任意一点P(x,y)(其中x≥0)到定点F(1,0)的距离比它到y轴的距离大1.
(1)求曲线C的轨迹方程;
(2)若过点F(1,0)的直线l与曲线C相交于不同的A,B两点,求
OA
OB
的值;
(3)若曲线C上不同的两点M、N满足
OM
MN
=0
,求|
ON
|
的取值范围.

查看答案和解析>>

同步练习册答案