【题目】甲乙两人分别投掷两颗骰子与一颗骰子,设甲的两颗骰子的点数分别为
与
,乙的骰子的点数为
,则掷出的点数满足
的概率为________(用最简分数表示).
科目:高中数学 来源: 题型:
【题目】如果存在常数a,使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:2,3,6,m(m>6)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)已知有穷等差数列{bn}的项数是n0(n0≥3),所有项之和是B,求证:数列{bn}是“兑换数列”,并用n0和B表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列{cn},是否有可能它既是等比数列,又是“兑换数列”?给出你的结论,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.
![]()
(1)求证:AB⊥平面PCB;
(2)求二面角C﹣PA﹣B的大小的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游胜地欲开发一座景观山,从山的侧面进行勘测,迎面山坡线
由同一平面的两段抛物线组成,其中
所在的抛物线以
为顶点、开口向下,
所在的抛物线以
为顶点、开口向上,以过山脚(点
)的水平线为
轴,过山顶(点
)的铅垂线为
轴建立平面直角坐标系如图(单位:百米).已知
所在抛物线的解析式
,
所在抛物线的解析式为![]()
![]()
(1)求
值,并写出山坡线
的函数解析式;
(2)在山坡上的700米高度(点
)处恰好有一小块平地,可以用来建造索道站,索道的起点选择在山脚水平线上的点
处,
(米),假设索道
可近似地看成一段以
为顶点、开口向上的抛物线
当索道在
上方时,索道的悬空高度有最大值,试求索道的最大悬空高度;
(3)为了便于旅游观景,拟从山顶开始、沿迎面山坡往山下铺设观景台阶,台阶每级的高度为20厘米,长度因坡度的大小而定,但不得少于20厘米,每级台阶的两端点在坡面上(见图).试求出前三级台阶的长度(精确到厘米),并判断这种台阶能否一直铺到山脚,简述理由?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
.
(1)若
满足
为
上奇函数且
为
上偶函数,求
的值;
(2)若函数![]()
满足
对
恒成立,函数
,求证:函数
是周期函数,并写出
的一个正周期;
(3)对于函数
,![]()
,若
对
恒成立,则称函数
是“广义周期函数”,
是其一个广义周期,若二次函数
的广义周期为
(
不恒成立),试利用广义周期函数定义证明:对任意的
,
,
成立的充要条件是
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图1是某斜拉式大桥图片,为了了解桥的一些结构情况,学校数学兴趣小组将大桥的结构进行了简化,取其部分可抽象成图2所示的模型,其中桥塔
、
与桥面
垂直,通过测量得知
,
,当
为
中点时,
.
(1)求
的长;
(2)试问
在线段
的何处时,
达到最大.
![]()
![]()
图1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记无穷数列
的前
项中最大值为
,最小值为
,令![]()
(Ⅰ)若
,请写出
的值;
(Ⅱ)求证:“数列
是等差数列”是“数列
是等差数列”的充要条件;
(Ⅲ)若
,求证:存在
,使得
,有
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com