精英家教网 > 高中数学 > 题目详情
(2012•道里区二模)已知函数f(x)=Msin(ωx+φ)+B(M>0,0<ω<2,|φ|<
π
2
)
的一系列对应值如下表:
x -
π
6
π
3
6
3
11π
6
3
17π
6
y -1 1 3 1 -1 1 3
(1)根据表格提供的数据求y=f(x)的解析式;
(2)在△ABC中,角A、B、C的对边分别为a、b、c,cosA=f(
π
6
)+
1
3
,b=3c,求sinC.
分析:(1)通过最大值与最小值,求出M,B,通过函数的周期求出ω,利用函数的图象最低点的坐标,求出φ,即可解出函数f(x)的解析式;
(2)先求出cosA=
1
3
,再利用余弦定理,求出
a
c
=2
2
,利用正弦定理可得结论.
解答:解:(1)由题意,
M+B=3
-M+B=-1
,∴
M=2
B=1

∵函数的周期为
11π
6
-(-
π
6
)
=2π,∴ω=
T
=1
∴f(x)=2sin(x-φ)+1
(-
π
6
,-1)
代入可得sin(-
π
6
-φ)=-1
∵|φ|<
π
2
,∴φ=
π
3

f(x)=2sin(x-
π
3
)+1
…(4分)
(Ⅱ)∵f(x)=2sin(x-
π
3
)+1
,∴f(
π
6
)=2sin(
π
6
-
π
3
)+1=0

cosA=f(
π
6
)+
1
3
,∴cosA=
1
3
…(6分)
∵b=3c,由余弦定理得a2=b2+c2-2bccosA=8c2…(8分)
a
c
=2
2

cosA=
1
3
,∴sinA=
2
2
3

∴由正弦定理得
a
sinA
=
c
sinC
,∴sinC=
csinA
a
=
1
3
…(12分)
点评:本题考查学生的读图能力,考查函数解析式的确定,考查余弦、正弦定理的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•道里区二模)已知椭圆的中心为原点,离心率e=
3
2
,且它的一个焦点与抛物线x2=-4
3
y
的焦点重合,则此椭圆方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•道里区二模)一个几何体的三视图如图所示,则该几何体的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•道里区二模)对于实数a、b,“b<a<0”是“
1
b
1
a
”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•道里区二模)已知△ABC,∠C=60°,AC=2,BC=1,点M是△ABC内部或边界上一动点,N是边BC的中点,则
AN
AM
的最大值为
7
2
7
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•道里区二模)已知数列{an}为等差数列,且a1+a2+a18=4π,则cos(a2+a12)的值为(  )

查看答案和解析>>

同步练习册答案