精英家教网 > 高中数学 > 题目详情

【题目】若函数y=ax在区间[0,2]上的最大值和最小值的和为5,则函数y=logax在区间[ ,2]上的最大值和最小值之差是(
A.1
B.3
C.4
D.5

【答案】B
【解析】解:∵函数y=ax在区间[0,2]上的最大值和最小值的和为5,
∴1+a2=5,
解得a=2,a=﹣2(舍去),
∴y=log2x在区间[ ,2]上为增函数,
∴ymax=log22=1,ymin=log2 =﹣2,
∴1﹣(﹣2)=3,
故选:B
【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个盒子装有六张卡片,上面分别写着如下六个定义域为的函数:

(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;

(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga|x+1|(a>0且a≠1),当x∈(0,1)时,恒有f(x)<0成立,则函数g(x)=loga(﹣ x2+ax)的单调递减区间是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N.

(1)求证:BABM=BCBN;
(2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列等式:
1﹣ =
1﹣ + = +
1﹣ + + = + +

据此规律,第n个等式可为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2ex
(1)求f(x)的单调区间;
(2)若x∈[﹣2,2]时,不等式f(x)<m恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】化简求值
(1)计算: ﹣( 0+0.2 ×( 4
(2)已知x +x =3,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x||x﹣a|<4},B={x|x2﹣4x﹣5>0}.
(1)若a=1,求A∩B;
(2)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3﹣x2+4x+3,若在区间[﹣2,1]上,f(x)≥0恒成立,则a的取值范围是(
A.[﹣6,﹣2]
B.
C.[﹣5,﹣3]
D.[﹣4,﹣3]

查看答案和解析>>

同步练习册答案