精英家教网 > 高中数学 > 题目详情
已知变量x,y满足不等式组
x+2y-1≥0
2x+y-2≤0
x-y+2≥0
,则z=2x+2y的最小值为(  )
A、
5
2
B、2
C、3
32
D、3
3
1
2
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用数形结合以及指数函数的图象和性质,结合基本不等式即可得到结论.
解答: 解:如图,点(x,y)所满足的区域即为△ABC,
其中A(-1,1),B(0,2),C(1,0),
可见,z=2x+2y取得最小值的点一定在线段AC上,
z=2x+2y=21-2y+2y=
2
(2y)2
+
2y
2
+
2y
2
≥3
3
1
2
,(当且仅当x=-
1
3
,y=
2
3
时等号成立),
故选:D.
点评:本题主要考查基本不等式的应用,利用数形结合确定点的位置是解决本题的关键,综合性较强,有一定的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2对任意的x∈[a,a+l],不等式f(x+a)≥4f(x)恒成立,则实数a的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

《张丘建算经》卷上第22题--“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加(  )
A、
4
7
B、
16
29
C、
8
15
D、
16
31

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,且Sn=
n
m
,Sm=
m
n
(m,n∈N*且m≠n),则下列各值中可以为Sn+m的值的是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=25,4an+1=4an-7(n∈N*),若其前n项和为Sn,则Sn的最大值为(  )
A、15
B、750
C、
765
4
D、
705
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-ln(x+1)的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

某教育主管部门到一所中学检查学生的体质健康情况.从全体学生中,随机抽取12名进行体质健康测试,测试成绩(百分制)以茎叶图形式表示如图所示.根据学生体质健康标准,成绩不低于76的为优良.
(Ⅰ)写出这组数据的众数和中位数;
(Ⅱ)将频率视为概率.根据样本估计总体的思想,在该校学生中任选3人进行体质健康测试,求至少有1人成绩是“优良”的概率;
(Ⅲ)从抽取的12人中随机选取3人,记ξ表示成绩“优良”的学生人数,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(2
3
tan2x+1)cos2x+1-2sin2x,x∈[0,
π
2
].
(Ⅰ)求f(x)在[0,
π
2
]的单调区间;
(Ⅱ)若f(x)-m≥0对于任意x∈[0,
π
2
]恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,已知S4=8,S8=12,则a13+a14+a15+a16的值为
 

查看答案和解析>>

同步练习册答案