精英家教网 > 高中数学 > 题目详情

正方体ABCD-A1B1C1D1棱长为2,E是棱A1B1的中点.
(1)求异面直线A1B1与BD的距离;
(2)求直线EC1与BD所成角的大小.

解:(1)∵B1B⊥AB,B1B⊥BC,
∴B1B⊥平面ABCD
∴B1B⊥BD
又B1B⊥A1B1
∴线段B1B的长即为所求.
∵B1B=2,
∴异面直线A1B1与BD的距离为2.
(2)取A1D1中点H
∴EH∥B1D1
∴EH∥BD
∴EC1与BD所成角为∠HEC1(或其补角)
设正方体棱长为2,则HE=,EC1=,HC1=
∴cos∠HEC1===>0
∴EC1与BD所成角为arccos
分析:(1)根据条件可得BB1⊥面ABCD,BB1⊥面A1B1C1D1故可得B1B⊥BD且B1B⊥A1B1,则根据异面直线间的距离的定义可知线段B1B的长即为所求.
(2)根据异面直线所成的角的定义可知需将异面直线转化为相交直线故可取A1D1中点H连接EH,HC1则可得EC1与BD所成角为∠HEC1(或其补角)然后在三角形EHC1中利用余弦定理即可求解.
点评:本题主要考察了异面直线间的距离和异面直线所成的角.解题的关键是要充分理解异面直线间的距离和异面直线所成的角的定义,同时再利用余弦定理求角时要根据角的余弦值的正负决定异面直线所成的角是这个角还是其补角!
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的各顶点均在半径为1的球面上,则四面体A1-ABC的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是从上下底面处在水平状态下的棱长为a的正方体ABCD-A1B1C1D1中分离出来的:
(1)试判断A1是否在平面B1CD内;(回答是与否)
(2)求异面直线B1D1与C1D所成的角;
(3)如果用图示中这样一个装置来盛水,那么最多可以盛多少体积的水.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知边长为6的正方体ABCD-A1B1C1D1,E,F为AD、CD上靠近D的三等分点,H为BB1上靠近B的三等分点,G是EF的中点.
(1)求A1H与平面EFH所成角的正弦值;
(2)设点P在线段GH上,
GP
GH
=λ,试确定λ的值,使得二面角P-C1B1-A1的余弦值为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在棱长为2cm的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作出与截面PBC1平行的截面,简单证明截面形状,并求该截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,M是棱AB的中点,过A1,M,C三点的平面与CD所成角正弦值(  )

查看答案和解析>>

同步练习册答案