分析 (1)若F(x)=f(g(x))•g(f(x)),先求出F(x)的表达式,结合一元二次函数的性质求函数F(x)在x∈[1,4]的值域;
(2)先求出G(x)=f(8x2)f($\sqrt{x}$)-kf(x)的表达式,利用换元法将函数G(x)进行转化求解;
(3)若H(x)=$\frac{g(x)}{{g(x)+\sqrt{2}}}$,证明H(x)+H(1-x)=1,利用倒序相加法,即可求H($\frac{1}{2016}$)+H($\frac{2}{2016}$)+H($\frac{3}{2016}$)+…+H($\frac{2015}{2016}$)的值.
解答 解:(1)若F(x)=f(g(x))•g(f(x))=(1+log22x)•${2}^{1+lo{g}_{2}x}$
=(1+x)•2×${2}^{lo{g}_{2}x}$=2x(1+x)=2x2+2x=2(x+$\frac{1}{2}$)2-$\frac{1}{2}$
当x∈[1,4]上函数F(x)为增函数,
则函数的最大值为F(4)=40,函数的最小值为F(1)=4,则函数的值域为[4,40].
(2)令G(x)=f(8x2)f($\sqrt{x}$)-kf(x)=(1+log28x2)(1+log2$\sqrt{x}$)-k(1+log2x)
=(1+og28+log2x2))(1+$\frac{1}{2}$log2x)-k(1+log2x)
=(4+2log2x))(1+$\frac{1}{2}$log2x)-k(1+log2x)
=(log2x)2+4log2x+4-k-klog2x=(log2x)2+(4-k)log2x+4-k,
设t=log2x,当x∈[1,4],则t∈[0,2],
则函数等价为y=h(t)=t2+(4-k)t+4-k
若函数G(x)在区间[1,4]有零点,
则等价为y=h(t)=t2+(4-k)t+4-k在t∈[0,2]上有零点,
即h(t)=t2+(4-k)t+4-k=0在t∈[0,2]上有解,
即t2+4t+4-k(1+t)=0在t∈[0,2]上有解,
即k=$\frac{{t}^{2}+4t+4}{1+t}$=$\frac{(t+1)^{2}+2(t+1)+1}{t+1}$=t+1+$\frac{1}{t+1}$+2,
设m=t+1,则m∈[1,3],
则k=m+$\frac{1}{m}$+2,
则k=m+$\frac{1}{m}$+2在m∈[1,3]上递增,
则当m=1时,k=1+1+2=4,当m=3时,k=3+$\frac{1}{3}$+2=$\frac{16}{3}$,
∴4≤m+$\frac{2}{m}$+2≤$\frac{16}{3}$,
即4≤k≤$\frac{16}{3}$,
即实数k的取值范围是4≤k≤$\frac{16}{3}$;
(3)若H(x)=$\frac{g(x)}{{g(x)+\sqrt{2}}}$,
则H(x)=$\frac{g(x)}{{g(x)+\sqrt{2}}}$=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$,
则H(x)+H(1-x)=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$+$\frac{{2}^{1-x}}{{2}^{1-x}+\sqrt{2}}$=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$+$\frac{2}{2+\sqrt{2}•{2}^{x}}$=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$+$\frac{\sqrt{2}}{\sqrt{2}+{2}^{x}}$=1,
设H($\frac{1}{2016}$)+H($\frac{2}{2016}$)+H($\frac{3}{2016}$)+…+H($\frac{2015}{2016}$)=S,
H($\frac{2015}{2016}$)+H($\frac{2014}{2016}$)+…H($\frac{2}{2016}$)+H($\frac{1}{2016}$)=S,
两式相加得2015[H($\frac{1}{2016}$)+H($\frac{2015}{2016}$)]=2S,
即2S=2015,
则S=$\frac{2015}{2}$.
点评 本题主要考查函数与方程的应用,求出函数的解析式,分别利用换元法,转化法以及倒序相加法将函数进行化简是解决本题的关键.综合性较强,难度较大.
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$-$\frac{1}{2}$i | B. | $\frac{3}{2}$+$\frac{1}{2}$i | C. | 1+$\frac{1}{2}$i | D. | 1-$\frac{1}{2}$i |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com