精英家教网 > 高中数学 > 题目详情
设F1、F2分别为双曲线C:
x2
a2
-
y2
b2
=1(a,b>0)的左右焦点,A为双曲线的左顶点,以F1F2为直径的圆交双曲线某条渐近线于M、N两点,且满足∠MAN=120°,则该双曲线的离心率为
 
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:先求出M,N的坐标,再利用余弦定理,求出a,c之间的关系,即可得出双曲线的离心率.
解答: 解:设以F1F2为直径的圆与渐近线y=
b
a
x相交与点M的坐标为(x0,y0)(x0>0),
根据对称性得N点的坐标为(-x0,-y0),
y0=
b
a
x
0
x02+y02=c2

解得M(a,b),N(-a,-b);
又∵A(-a,0),且∠MAN=120°,
∴由余弦定理得4c2=(a+a)2+b2+b2-2
(a+a)2+b2
•bcos 120°,
化简得7a2=3c2
∴e=
c
a
=
21
3

故答案为:
21
3
点评:本题考查了双曲线的标准方程与几何性质的应用问题,解题时应熟记它的几何性质是什么,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数为奇函数,且当x>0时,f(x)=log2(x-1)+x2-a,且f(2)=1,则f(-3)=(  )
A、-1B、1C、-7D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,anan+1=(
1
2
n,求an通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD中,PA=AB,PA⊥底面ABCD,ABCD是平行四边形,且∠BAC=90°.
(Ⅰ)求证:PB⊥AC;
(Ⅱ)若点E是线段PD上一点,且满足
PE
=2
ED
.求二面角E-AC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线x2-y2=a(a≠0)的离心率是(  )
A、
2
B、
2
2
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知g(x)=1-2x,f[g(x)]=
1
2x+2
,则f(-3)等于(  )
A、
1
6
B、
1
10
C、
3
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(-1,2),则函数f(3-x)的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若{1,2}⊆A⊆{1,2,3,4,5}}则满足条件的集合A的个数是(  )
A、6B、7C、8D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面ABCD为正方形,如果PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC,PD,BC的中点
(Ⅰ)求证:PA∥平面EFG;
(Ⅱ)求证:CG⊥平面PCD,并求P-EFG三棱锥的体积.

查看答案和解析>>

同步练习册答案