精英家教网 > 高中数学 > 题目详情

若把直线x-2y+c=0向左平移1个单位,再向下平移两个单位,所得直线与圆+2x-4y=0相切,则实数C的值是

[  ]

A.±

B.±5

C.10,1

D.3,13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①若△ABC三边为a,b,c,面积为S,内切圆的半径r=
2S
a+b+c
,则由类比推理知四面体ABCD的内切球半径R=
3V
S1+S2+S3+S4
(其中,V为四面体的体积,S1,S2,S3,S4为四个面的面积);
②若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是
y
=1.23x+0.08

③若偶函数f(x)(x∈R)满足f(x+2)=f(x),且x∈[0,1]时,f(x)=x,则方程f(x)=log3|x|有3个根.
④若圆C1x2+y2+2x=0,圆C2x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中,正确命题的序号是
①②④
①②④
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)选做题
A.选修4-1:几何证明选讲
如图,自⊙O外一点P作⊙O的切线PC和割线PBA,点C为切点,割线PBA交⊙O于A,B两点,点O在AB上.作CD⊥AB,垂足为点D.
求证:
PC
PA
=
BD
DC

B.选修4-2:矩阵与变换
设a,b∈R,若矩阵A=
a0
-1b
把直线l:y=2x-4变换为直线l′:y=x-12,求a,b的值.
C.选修4-4:坐标系与参数方程
求椭圆C:
x2
16
+
y2
9
=1上的点P到直线l:3x+4y+18=0的距离的最小值.
D.选修4-5不等式选讲
已知非负实数x,y,z满足x2+y2+z2+x+2y+3z=
13
4
,求x+y+z的最大值.

查看答案和解析>>

科目:高中数学 来源:2012年江苏省苏锡常镇四市高考数学二模试卷(解析版) 题型:解答题

选做题
A.选修4-1:几何证明选讲
如图,自⊙O外一点P作⊙O的切线PC和割线PBA,点C为切点,割线PBA交⊙O于A,B两点,点O在AB上.作CD⊥AB,垂足为点D.
求证:
B.选修4-2:矩阵与变换
设a,b∈R,若矩阵把直线l:y=2x-4变换为直线l′:y=x-12,求a,b的值.
C.选修4-4:坐标系与参数方程
求椭圆C:=1上的点P到直线l:3x+4y+18=0的距离的最小值.
D.选修4-5不等式选讲
已知非负实数x,y,z满足x2+y2+z2+x+2y+3z=,求x+y+z的最大值.

查看答案和解析>>

科目:高中数学 来源:黑龙江省模拟题 题型:填空题

给出下列四个命题:
①若△ABC三边为a,b,c,面积为S,内切圆的半径,则由类比推理知四面体ABCD的内切球半径(其中,V为四面体的体积,为四个面的面积);
②若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是
③若偶函数f(x)(x∈R)满足f(x+2)=f(x),且x∈[0,1]时,f(x)=x,则方程f(x)=log3|x|有3个根;
④若圆C1:x2+y2+2x=0,圆C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线;
其中,正确命题的序号是(    )(把你认为正确命题的序号都填上)。

查看答案和解析>>

同步练习册答案