精英家教网 > 高中数学 > 题目详情
12.设随机变量ξ服从正态分布N(2,9),若P(ξ>c)=P(ξ<c<-2),则c的值为3.

分析 随机变量ξ服从正态分布N(2,9),得到曲线关于x=2对称,根据P(ξ>c)=P(ξ<c-2),结合曲线的对称性得到点c与点c-2关于点2对称的,从而做出常数c的值得到结果.

解答 解:随机变量ξ服从正态分布N(2,9),
∴曲线关于x=2对称,
∵P(ξ>c)=P(ξ<c-2),
∴$\frac{c+c-2}{2}$=2,
∴c=3
故答案为:3.

点评 本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.判断下列函数的奇偶性.
(1)y=x3+$\frac{1}{x}$;
(2)y=$\sqrt{2x-1}$+$\sqrt{1-2x}$;
(3)y=x4+x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若集合A={x||x|≤2,x∈Z},B={y|y=x2-1,x∈A},则A∩B={-1,0},A∪B={-2,-1,0,1,2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)是奇函数,并在R上为增函数,当0≤θ<$\frac{π}{2}$时,f(msinθ)+f(1-m)>0恒成立,则实数m的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC,sinA,cosB,tanC可以取负值的最多个数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直角三角形ABC的顶点A(5,-1),B(1,1),C(2,m),求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求y=$\sqrt{{x}^{2}-4}$+lgcosx的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.判断下列函数的奇偶性并说明理由:
(1)f(x)=$\frac{1+{a}^{2x}}{1-{a}^{2x}}$(a>0,a≠1);
(2)f(x)=$\sqrt{x-1}$+$\sqrt{1-x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=2x-ax为奇函数,则a=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案