精英家教网 > 高中数学 > 题目详情
精英家教网如图,正三棱柱ABC-A1B1C1各棱长都等于a,E是BB1的中点.
(1)求直线C1B与平面A1ABB1所成角的正弦值;
(2)求证:平面AEC1⊥平面ACC1A1
(3)求点C1到平面AEC的距离.
分析:(1)由题意取A1B1中点M,再证明C1M⊥平面A1ABB1,即∠C1BM是所求的角,在Rt△BMC1中求解;
(2)取A1C1的中点D1,AC1的中点F,再证D1FEB1是平行四边形和B1D1⊥平面ACC1A1,即得EF⊥平面ACC1A1,故证出面面垂直;
(3)由(2)知EF是三棱锥E-ACC1的高,求出EF的长,再利用换低公式和体积相等求出点C1到平面AEC的距离.
解答:(1)解:取A1B1中点M,连接C1M,BM.
∵三棱柱ABC-A1B1C1是正三棱柱,
∴C1M⊥A1B1,C1M⊥BB1
∴C1M⊥平面A1ABB1
∴∠C1BM为直线C1B与平面A1ABB1所成的角.
在Rt△BMC1中,C1M=
3
2
a,BC1=
2
a,
∴sin∠C1BM=
C1M
BC1
=
6
4
精英家教网
(2)证明:取A1C1的中点D1,AC1的中点F,连接B1D1、EF、D1F.
则有D1F
.
1
2
AA1,B1E
.
1
2
AA1
∴D1F
.
B1E.
则四边形D1FEB1是平行四边形,
∴EF
.
B1D1
由于三棱柱ABC-A1B1C1是正三棱柱,
∴B1D1⊥A1C1
又∵平面A1B1C1⊥平面ACC1A1于A1C1,且B1D1?平面A1B1C1
∴B1D1⊥平面ACC1A1,∴EF⊥平面ACC1A1
∵EF?平面AEC1,∴平面AEC1⊥平面ACC1A1
(3)由(2)知,EF⊥平面AC1,则EF是三棱锥E-ACC1的高.
由三棱柱各棱长都等于a,则EC=AE=EC1=
5
2
a,AC1=
2
a.
∴EF=
AE2-AF2
=
3
2
a.
∵V_C1-AEC=V_E-ACC1,设三棱锥V_C1-AEC的高为h,则h为点C1到平面AEC的距离.
1
3
S△AEC•h=
1
3
S_△ACC1•EF,
1
3
×
1
2
a2h=
1
3
×
1
2
a2
3
2
a.
∴h=
3
2
a,即点C1到平面AEC的距离是
3
2
a.
点评:本题考查了用面面垂直的性质定理作出线面角再来求解,用面面垂直的判定定理证明面面垂直,求点到面的距离可用体积相等和换底求解;考查了转化思想和推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1的各棱长都2,E,F分别是AB,A1C1的中点,则EF的长是(  )
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥面A1BD;
(Ⅱ)设点O为AB1上的动点,当OD∥平面ABC时,求
AOOB1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1中(注:底面为正三角形且侧棱与底面垂直),BC=CC1=2,P,Q分别为BB1,CC1的中点.
(Ⅰ)求多面体ABC-A1PC1的体积;
(Ⅱ)求A1Q与BC1所成角的大小.

查看答案和解析>>

同步练习册答案