精英家教网 > 高中数学 > 题目详情
13.如图,圆锥的顶点为P,底面圆为O,底面的一条直径为AB,C为半圆弧$\widehat{AB}$的中点,E为劣弧$\widehat{CB}$的中点,已知PO=2,OA=1,
(1)求三棱锥P-AOC的体积;
(2)求异面直线PA和OE所成角的余弦值.

分析 (1)由条件便知PO为三棱锥P-AOC的高,底面积S△AOC又容易得到,从而带入棱锥的体积公式即可得到该三棱锥的体积.
(2)根据条件能够得到OE∥AC,从而找到异面直线PA,OE所成角为∠PAC,可取AC中点H,连接PH,便得到PH⊥AC,从而可在Rt△PAH中求出cos∠PAC.

解答 解:(1)∵PO=2,OA=1,OC⊥AB,
∴三棱锥P-AOC的体积V=$\frac{1}{3}×\frac{1}{2}×1×1×2$=$\frac{1}{3}$;
(2)∵C为半圆弧$\widehat{AB}$的中点,E为劣弧$\widehat{CB}$的中点,
∴∠BOE=45°,又∠ACO=45°;
∴OE∥AC;
∴∠PAC便是异面直线PA和OE所成角;
在△ACP中,AC=$\sqrt{2}$,AP=CP=$\sqrt{5}$.
如图,取AC中点H,连接PH,则PH⊥AC,AH=$\frac{\sqrt{2}}{2}$
∴在Rt△PAH中,cos∠PAH=$\frac{{\sqrt{10}}}{10}$;
∴异面直线PA与OE所成角的余弦值为$\frac{{\sqrt{10}}}{10}$.

点评 考查圆锥的定义,圆锥的高和母线,等弧所对的圆心角相等,能判断两直线平行,以及异面直线所成角的定义及找法、求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设集合A={a,b,c,d},B={e,f,g,h},求以A为定义域,B为值域的不同的函数个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.写出一个满足f($\frac{1}{x}$)=-f(x)的偶函数的函数解析式f(x)=0,x≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义移动运算“⊕”,对于任意正整数n满足以下运算:(1)1⊕1=1;(2)(n+1)⊕1=2+n⊕1,则n⊕1用含n的代数式可表示为(  )
A.2n-1B.nC.2n-1D.2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知在极坐标系下,曲线C:ρ(cosα+2sinα)=4(α为参数)与点A(2,$\frac{π}{3}$).
(1)求曲线C与点A的位置关系;
(2)已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标的x轴正半轴重合,直线l:$\left\{\begin{array}{l}{x=1-2t}\\{y=-2+4t}\end{array}\right.$,求曲线C与直线L的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PD⊥底面ABCD,AB=2AD,∠ADB=90°,
(1)证明PA⊥BD;
(2)设PD=AD=1,求三棱锥D-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,已知ABCD为梯形,AB∥CD,CD=2AB,且PD⊥平面ABCD,M为线段PC上一点.
(1)当∠CBD=90°时,证明:平面PBC⊥平面PDB;
(2)设平面PAB∩平面PDC=l,证明:AB∥l
(3)当平面MBD将四棱锥P-ABCD恰好分成两个体积体积相等的几何体时,试求$\frac{PM}{MC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C1:ρ=4cosθ.
(1)在极坐标系中,与曲线C1相切的一条直线方程为B
A.ρcosθ=2   B.ρsinθ=2   C.ρ=4sin(θ+$\frac{π}{3}$)   D.ρ=4sin(θ-$\frac{π}{3}$)
(2)已知曲线C1的极坐标方程为:ρcosθ=3,则曲线C1与C2交点的极坐标为(2$\sqrt{3}$,$\frac{π}{6}$)或(2$\sqrt{3}$,-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.化简或求值:
(1)($\frac{8}{27}$)${\;}^{\frac{2}{3}}$+(0.008)${\;}^{-\frac{2}{3}}$×$\frac{2}{25}$    
(2)$\frac{-5}{lo{g}_{2}3}$+log3$\frac{32}{9}$-3${\;}^{lo{g}_{3}5}$.

查看答案和解析>>

同步练习册答案