精英家教网 > 高中数学 > 题目详情
3.化简或求值:
(1)($\frac{8}{27}$)${\;}^{\frac{2}{3}}$+(0.008)${\;}^{-\frac{2}{3}}$×$\frac{2}{25}$    
(2)$\frac{-5}{lo{g}_{2}3}$+log3$\frac{32}{9}$-3${\;}^{lo{g}_{3}5}$.

分析 (1)利用有理数指数幂的性质、运算法则求解.
(2)利用对数性质、运算法则、换底公式求解.

解答 解:(1)($\frac{8}{27}$)${\;}^{\frac{2}{3}}$+(0.008)${\;}^{-\frac{2}{3}}$×$\frac{2}{25}$
=$\frac{4}{9}$+25×$\frac{2}{25}$
=$\frac{22}{9}$.
(2)$\frac{-5}{lo{g}_{2}3}$+log3$\frac{32}{9}$-3${\;}^{lo{g}_{3}5}$
=-5log32+$lo{g}_{3}\frac{32}{9}$-5
=$lo{g}_{3}\frac{1}{32}$+$lo{g}_{3}\frac{32}{9}$-5
=$lo{g}_{3}\frac{1}{9}$-5
=-7.

点评 本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意指数、对数性质及运算法则、换底公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,圆锥的顶点为P,底面圆为O,底面的一条直径为AB,C为半圆弧$\widehat{AB}$的中点,E为劣弧$\widehat{CB}$的中点,已知PO=2,OA=1,
(1)求三棱锥P-AOC的体积;
(2)求异面直线PA和OE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在以坐标原点为极点,x轴的正半轴为极轴建立的极坐标系中,曲线C1的极坐标方程为ρ=2,正三角形ABC的顶点都在C1上,且A,B,C依逆时针次序排列,点A的坐标为(2,0).
(1)求点B,C的直角坐标;
(2)设P是圆C2:x2+(y+$\sqrt{3}$)2=1上的任意一点,求|PB2|+|PC|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知A(1,0),$B(1,\sqrt{2})$将线段OA,AB各n等分,设OA上从左至右的第k个分点为Ak,AB上从下至上的第k个分点Bk(1<k<n),过点Ak且垂直于x轴的直线为lK,OBK交lK于PK,则点PK在同一(  )
A.圆上B.椭圆上C.双曲线上D.抛物线上

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3中点,D是EF与SG2的交点,现沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,则在四面体G-SEF中必有(  )
A.SD⊥平面EFGB.SE⊥GFC.EF⊥平面SEGD.SE⊥SF

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在直三棱柱ABC-A1B1C1中,AB=AC=BC=2,AA1=1,则点A到平面A1BC的距离为(  )
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{3\sqrt{3}}}{4}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,曲线C由部分椭圆C1:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1所在椭圆的离心率为$\frac{\sqrt{2}}{2}$,
(1)求a,b的值;
(2)过点B的直线l与C1,C2分别交于点P,Q(P,Q,A,B中任意两点均不重合),若AP⊥AQ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.执行如图所示的程序框图,输出的S7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,ze输出S的值为(  )
A.10B.-6C.3D.12

查看答案和解析>>

同步练习册答案