分析 (1)先求出曲线C1的直角坐标方程,由此能求出点B,C的直角坐标.
(2)由圆C2的参数方程结合两点间距离公式,利用三角函数性质能求出|PB2|+|PC|2的取值范围.
解答 解:(1)∵曲线C1的极坐标方程为ρ=2,∴曲线C1的直角坐标方程为x2+y2=4,
∵正三角形ABC的顶点都在C1上,且A,B,C依逆时针次序排列,点A的坐标为(2,0),
∴B点的坐标为(2cos120°,2sin120°),即B(-1,$\sqrt{3}$),
C点的坐标为(2cos240°,2sin240°),即C(-1,-$\sqrt{3}$).
(2)∵圆C2:x2+(y+$\sqrt{3}$)2=1,∴圆C2的参数方程$\left\{\begin{array}{l}{x=cosα}\\{y=-\sqrt{3}+sinα}\end{array}\right.,0≤α<2π$,
设点P(cosα,-$\sqrt{3}+sinα$),0≤α<2π,
∴|PB2|+|PC|2=$(cosα+1)^{2}+(sinα-2\sqrt{3})^{2}$+(cosα+1)2+sin2α
=16+4cosα-4$\sqrt{3}$sinα
=16+8cos($α+\frac{π}{3}$),
∴|PB2|+|PC|2的范围是[8,24].
点评 本题考查点的坐标的求法,考查代数和的取值范围的求法,是基础题,解题时要注意公式参数方程和普通方程的互化和两点间距离公式、三角函数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0条 | B. | 2条 | C. | 4条 | D. | 无数条 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 30°或150° | D. | 60°或120° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com