| A. | ($\frac{π}{3}$,0) | B. | ($\frac{π}{4}$,0) | C. | ($\frac{π}{12}$,0) | D. | (0,0) |
分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,得出结论.
解答 解:把函数y=sin(x+$\frac{π}{6}$)图象上各点的横坐标伸长为原来的2倍(纵坐标不变),可得函数y=sin($\frac{1}{2}$x+$\frac{π}{6}$)的图象;
再将图象向右平移$\frac{π}{3}$个单位,可得y=sin[$\frac{1}{2}$(x-$\frac{π}{3}$)+$\frac{π}{6}$]=sin$\frac{1}{2}$x 的图象,
令$\frac{1}{2}$x=kπ,求得x=2kπ,k∈Z,那么所得图象的对称中心为(2kπ,0)k∈Z,
故选:D.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 10 | C. | 11 | D. | 21 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{4}{5}$ | B. | -$\frac{7}{25}$ | C. | $\frac{4}{5}$ | D. | $\frac{7}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=${(\frac{1}{2})}^{x}$ | B. | y=log2x | C. | $y=lo{g}_{\frac{1}{2}}x$ | D. | y=${x}^{\frac{1}{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com