精英家教网 > 高中数学 > 题目详情

已知轴对称平面五边形(如图1),为对称轴,,将此图形沿折叠成直二面角,连接得到几何体(如图2).

(Ⅰ)证明:∥平面;     
(Ⅱ)求二面角的余弦值.

(Ⅰ)详见解析;(Ⅱ).

解析试题分析:(Ⅰ)主要利用空间向量、线线平行可证线面平行;(Ⅱ)主要利用平面的法向量来求二面角的平面角.
试题解析:(Ⅰ)以B为坐标原点,分别以射线BF、BC、BA为x轴、 y轴、z轴的正方向建立如图所示的坐标系.

由已知与平面几何知识得,

,∴AF∥DE,
平面,且平面 
∥平面 
(Ⅱ)由(Ⅰ)得四点共面,
平面,则
不妨令,故
由已知易得平面ABCD的一个法向量为
,∴二面角E-AD-B的余弦值为
考点:立体几何线面平行的证明、二面角的求解,考查学生的空间想象能力和空间向量的使用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在三棱柱中,侧面为矩形,的中点,交于点侧面.

(1)证明:
(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,底面是正方形,侧面是正三角形,平面底面

(Ⅰ)如果为线段VC的中点,求证:平面
(Ⅱ)如果正方形的边长为2, 求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形是正方形,平面分别为的中点,且.

(Ⅰ)求证:平面平面
(Ⅱ)求三棱锥与四棱锥的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在空间几何体中,平面,平面平面

(I)求证:平面
(II)如果平面,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三棱柱,底面三角形为正三角形,侧棱底面的中点,中点.

(Ⅰ)求证:直线平面
(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知几何体A—BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.
(1)求此几何体的体积V的大小;
(2)求异面直线DE与AB所成角的余弦值;
(3)试探究在DE上是否存在点Q,使得AQBQ并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图(1),在等腰直角三角形中,,点分别为线段的中点,将分别沿折起,使二面角和二面角都成直二面角,如图(2)所示。

(1)求证:
(2)求平面与平面所成的锐二面角的余弦值;
(3)求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,四棱锥中,平面,四边形是矩形,分别是的中点.若

(1)求证:平面
(2)求直线平面所成角的正弦值。

查看答案和解析>>

同步练习册答案