精英家教网 > 高中数学 > 题目详情
1.已知点A(-1,0),B(5,6),P(3,4),且$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,则λ=(  )
A.3B.2C.$\frac{1}{2}$D.$\frac{1}{3}$

分析 先求出向量$\overrightarrow{AP}$,$\overrightarrow{PB}$的坐标,根据向量数乘的坐标运算便可求出λ.

解答 解:$\overrightarrow{AP}=(4,4),\overrightarrow{PB}=(2,2)$;
∴$\overrightarrow{AP}=2\overrightarrow{PB}$;
∴λ=2.
故选:B.

点评 考查根据点的坐标求向量的坐标,以及向量坐标的数乘运算,共线向量基本定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.计算:${(\frac{16}{81})^{-0.75}}-lg25-2lg2$=$\frac{11}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点分别为F1、F2,过F1作倾斜角为30°的直线交双曲线的右支于点P,若∠PF1F2的平分线与∠F1PF2的平分线的交点为Q(1,1),则双曲线的渐近线方程为(  )
A.y=±$\sqrt{3+2\sqrt{3}}$xB.y=±$\sqrt{2\sqrt{3}-3}$xC.y=±($\sqrt{3}$+1)xD.y=±($\sqrt{3}$-1)x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知:向量$\overrightarrow{a}$=(1,$\sqrt{3}$),向量$\overrightarrow{b}$与向量$\overrightarrow{a}$所成的角为$\frac{π}{3}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=4.
(1)求向量$\overrightarrow{b}$;
(2)设$\overrightarrow{m}$=$\overrightarrow{a}$+k$\overrightarrow{b}$,$\overrightarrow{n}$=3k$\overrightarrow{a}$-2$\overrightarrow{b}$(k为正实数),当$\overrightarrow{m}$⊥$\overrightarrow{n}$时,判断$\overrightarrow{m}$+$\overrightarrow{n}$与$\overrightarrow{a}$是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A(-5,0),B(5,0),直线AM、BM相交于点M,且它们的斜率之积是$\frac{4}{9}$,试求点M的轨迹方程,并由点M的轨迹方程判断轨迹的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点A(-3,2),B(1,4),P为线段AB的中点,则向量$\overrightarrow{BP}$的坐标为(  )
A.(-2,-1)B.(2,1)C.(4,2)D.(-8,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.$\frac{1}{3}$(a+3x)=4(a-x),则x=$\frac{11a}{15}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点A(-3,5)B(0,3),试在直线y=x+1上找一点P,使|PA|+|PB|最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)sinα=$\frac{4}{5}$且α是第二象限角,求tanα的值;
(2)利用(1)中tanα的值求此式值:$\frac{sinα-cosα}{sinα+2cosα}$.

查看答案和解析>>

同步练习册答案