精英家教网 > 高中数学 > 题目详情
已知向量 , .
(1)求的最小正周期;
(2)若A为等腰三角形ABC的一个底角,求的取值范围.
(1) ;(2).

试题分析:(1)求出=利用两角和与差的正余弦函数公式化简得==∴最小正周期T=
(2)利用A为等腰三角形ABC的一个底角,求出A的范围为,所以,进而,再求出,即可得.
试题解析:(1)=       2分
==
==
=                     5分
∴最小正周期T=                   6分
(2)∵A为等腰三角形ABC的一个底角,∴
,∴,             8分
,即.           12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知a,b,c分别为ABC的三个内角A,B,C的对边,=(sinA,1),=(cosA,),且//
(I)求角A的大小;
(II)若a=2,b=2,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的周期为,其中
(Ⅰ)求的值及函数的单调递增区间;
(Ⅱ)在中,设内角A、B、C所对边的长分别为a、b、c,若,f(A)=,求b的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设α为锐角,若cos,则sin的值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

αβ∈(0,π),cos α=-,tan β=-,则α+2β=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若对?a∈(-∞,0),?θ∈R,使asin θ≤a成立,则cos的值为 (  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,则_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

=( )
A.4B.2C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是方程的两个实数根,则的值为            .

查看答案和解析>>

同步练习册答案