精英家教网 > 高中数学 > 题目详情
(本题满分18分)第一题满分5分,第二题满分5分,第三题满分8分.
如图,有一公共边但不共面的两个三角形ABC和A1BC被一平面DEE1D1所截,若平面DEE1D1分别交AB,AC,A1B,A1C于点D,E,D1,E1
(1)讨论这三条交线ED,CB, E1 D1的关系。
(2)当BC//平面DEE1D1时,求的值;

(3)当BC不平行平面DEE1D1时, 的值变化吗?为什么?
(1)互相平行或三线共点。
当BC//平面DEE1D1时,
平面ABC平面DEE1D1=ED
BC// ED,同理CB// E1 D1
∴ED//CB// E1 D1
当BC不平行平面DEE1D1时,
延长ED、CB交于点H,
∴H∈EF  ∵EF平面DEE1D1   ∴H∈平面DEE1D1 
同理H∈平面A1BC
∴H∈平面DEE1D1∩平面A1BC
即H∈E1D1   ∴E1、D1、H三点共线
∴三线共点
(2)解:∵BC//平面DEE1D1
且BC平面ABC,平面ABC∩平面DEE1D1="ED  "
∴BC∥ED,同理BC∥E1D1  
在△ABC中,BC∥ED
= 同理可得=
==1
(3)解:

由(1)可得,延长ED、CB、E1D1交于点H,
过点B作BF∥AC,BG∥A1C    
∵BF∥AC   ∴=
同理可得=
在△HCE中,BG∥CE1       ∴=
同理可得=
=====1
的值不变化,仍为1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(10分)如图,PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点.
(1)求证:MN//平面PAD
(2)求证:MN⊥CD
(3)若∠PDA=45°,求证:MN⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,异面直线所成角的大小是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,平面,则下列命题中:                            
①.若,则
②.若,则
③.若,则
④.若, ,则,其中真命题有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在矩形中,,又⊥平面
(Ⅰ)若在边上存在一点,使
的取值范围;
(Ⅱ)当边上存在唯一点,使时,
求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

四棱锥的底面是菱形,其对角线都与平面垂直,,则四棱锥公共部分的体积为
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)如图所示,平面平面的中点.
(Ⅰ)求证:平面
(Ⅱ)求证:平面平面
(Ⅲ)求凸多面体的体积为

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直三棱柱中,若∠BAC=,,则异面直线所成的角等于_________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
(理科)如图,四边形为矩形,四边形为梯形,平面平面
.
(Ⅰ)若中点,求证:平面
(Ⅱ)求平面所成锐二面角的大小.

查看答案和解析>>

同步练习册答案