精英家教网 > 高中数学 > 题目详情
设f(x)=x3-kx(k>0).
(1)若f′(2)=0,求f(x)在点(2,f(2))处的切线方程;
(2)若函数f(x)=x3-kx(k>0)在[1,+∞)上是单调函数,
(Ⅰ)求证:0<k≤3;(Ⅱ)设x0≥1,f(x0)≥1,且满足f(f(x0))=x0,求证:f(x0)=x0
分析:(1)求导数,确定切线的斜率,求出切点的坐标,即可得到切线方程;
(2)(Ⅰ)f(x)在[1,+∞)上是单调函数,即f'(x)≤0或f'(x)≥0在[1,+∞)上恒成立,从而解出k;
(Ⅱ)可设f(x0)=m,再由f(x)=x3-kx(k>0),证明m=x0即可.
解答:解:(1)由f(x)=x3-kx(k>0),得到f′(x)=3x2-k(k>0),
∵f′(2)=0,∴f′(2)=3×22-k=0,即k=12
则f(x)=x3-12x,f(2)=23-12×2=-16,
故f(x)在点(2,f(2))处的切线方程为y+16=0.
(2)证明:(Ⅰ)∵f′(x)=3x2-k(k>0)
又函数f(x)=x3-kx(k>0)在[1,+∞)上是单调函数,
则①若函数f(x)=x3-kx(k>0)在[1,+∞)上是增函数,则在[1,+∞)上f′(x)≥0恒成立,
即在[1,+∞)上恒有3x2≥k,故k≤3,又由k>0,∴0<k≤3;
②若函数f(x)=x3-kx(k>0)在[1,+∞)上是减函数,则在[1,+∞)上f′(x)≤0恒成立,
即在[1,+∞)上恒有3x2≤k,故k不存在;
综上,0<k≤3.
(Ⅱ)设f(x0)=m,则由f(f(x0))=x0
得到f(m)=x0,又f(x)=x3-kx(k>0)
x03-kx0=m
m3-km=x0
两式相减得到(x03-m3)-k(x0-m)=m-x0
(x0-m)(x02+m2+x0m+1-k)=0
∵x0≥1,f(x0)≥1即m≥1,
x02+m2+x0m+1-k≥4-k,而0<k≤3,
x02+m2+x0m+1-k≥1>0,从而只有x0-m=0,即m=x0
∴f(x0)=x0
点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=x3+ax2+bx+c,又k是一个常数,已知当k<0或k>4时,f(x)-k=0只有一个实根,当0<k<4时,f(x)-k=0有三个相异实根,则下列命题中错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+bx2+cx+d,又k是一个常数,已知当k<0或k>4时,f(x)-k=0只有一个实根;当0<k<4时,f(x)-k=0有三个相异实根,现给下列命题:
(1)f(x)-4=0与f'(x)=0有一个相同的实根;
(2)f(x)=0与f'(x)=0有一个相同的实根;
(3)f(x)+3=0的任一实根大于f(x)-1=0的任一实根;
(4)f(x)+5=0的任一实根小于f(x)-2=0的任一实根.其中所有正确命题是
(1)(2)(4)
(1)(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+ax2+bx+c,又k是一个常数,已知当k<0或k>4时,f(x)-k=0只有一个实根,当0<k<4时,f(x)-k=0有三个相异实根,现给出下列命题:
(1)f(x)-4=0和f′(x)=0有且只有一个相同的实根.
(2)f(x)=0和f′(x)=0有且只有一个相同的实根.
(3)f(x)+3=0的任一实根大于f(x)-1=0的任一实根.
(4)f(x)+5=0的任一实根小于f(x)-2=0的任一实根.
其中错误命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax•2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为
10
10
.若x=
2
3
时,y=f(x)有极值.
(1)求a、b、c的值;
(2)设g(x)=x3+k+8lnx,若关于x的方程f(x)=g(x)在[1,e]内有且只有一个实数根,求实数k的取值范围.

查看答案和解析>>

同步练习册答案