精英家教网 > 高中数学 > 题目详情

已知数列{an},{bn}都是由正数组成的等比数列,公比分别为p,q,其中p>q,且p≠1,q≠1.设cn=an+bn,sn为数列{cn}的前n项和.

解:,

.         

分两种情况讨论.

(Ⅰ)p>1.

          ∴

=

=

=

=p.     

(Ⅱ)p<1.

∵   0<q<p<1,        ∴

=                 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列(an}满足:a1=
1
2
,an+1=
n+1
2n
an,数列{bn}满足nbn=an(n∈N*).
(1)证明数列{bn}是等比数列,并求其通项公式:
(2)求数列{an}的前n项和Sn
(3)在(2)的条件下,若集合{n|
(n2+n)(2-Sn)
n+2
≥λ,n∈N*}=∅.求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-2)}(n∈N*)为等差数列,且a1=5,a3=29.
(1)求数列{an}的通项公式;
(2)对任意n∈N*
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<m
恒成立的实数m是否存在最小值?如果存在,求出m的最小值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列数列{an}前n项和Sn=-
1
2
n2+kn
(其中k∈N*),且Sn的最大值为8.
(Ⅰ)确定常数k并求{an}的通项公式;
(Ⅱ)若bn=9-2an,求数列{
1
bnbn+1
}
前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N+)为等差数列,且a1=3,a2=5,则
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列中{an}中a1=3,a2=5,其前n项和为Sn,满足Sn+Sn-2=2Sn-1+2n-1(n≥3)
(1)试求数列{an}的通项公式;
(2)令bn=
2n-1
anan+1
,Tn是数列{bn}的前n项和,证明:Tn
1
6

查看答案和解析>>

同步练习册答案