精英家教网 > 高中数学 > 题目详情
已知数列{log2(an-2)}(n∈N*)为等差数列,且a1=5,a3=29.
(1)求数列{an}的通项公式;
(2)对任意n∈N*
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<m
恒成立的实数m是否存在最小值?如果存在,求出m的最小值;如果不存在,说明理由.
分析:(1)设等差数列{log3(an-2)}的公差为d.根据a1和a3的值求得d,进而根据等差数列的通项公式求得数列{log3(an-2)}的通项公式,进而求得an
(2)把(1)中求得的an代入
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
中,进而根据等比数列的求和公式求得
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=1-
1
2n
,即可得出答案.
解答:解:(1)设等差数列{log3(an-2)}的公差为d.
由a1=5,a3=29得log327=log33+2d,即d=1.
所以log2(an-2)=1+(n-1)×1=n,即an=2n+2.
(2)证明:因为
1
an+1-an
=
1
2n+1-2n
=
1
2n

所以
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=
1
21
+
1
22
+
1
23
+…+
1
2n
=
1
2 
-
1
2n
×
1
2
1-
1
2
=1-
1
2n

1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<m
恒成立,
即1-
1
2n
<m,由于1-
1
2n
<1,
∴m≥1.
故存在m的最小值1,使得对任意n∈N*
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<m
恒成立.
点评:本题考查等差、等比数列的性质与存在性问题,注意与对数函数或指数函数的结合运用时,往往同时涉及等比、等差数列的性质,是一个难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a3=9.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
lim
n→∞
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)=(  )
A、2
B、
3
2
C、1
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a3=9
(1)求数列{an}的通项公式;
(2)求使
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
2012
2013
成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N+)为等差数列,且a1=3,a2=5,则
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
lim
n→∞
(
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)
=
1
1

查看答案和解析>>

同步练习册答案